Расчет резистора для светодиода, калькулятор
Светодиод имеет очень небольшое внутреннее сопротивление, если его подключить напрямую к блоку питания, то сила тока будет достаточной высокой, чтобы он сгорел.
Медные или золотые нити, которыми кристалл подключается к внешним выводам, могут выдерживать небольшие скачки, но при сильном превышении перегорают и питание прекращает поступать на кристалл.
Онлайн расчёт резистора для светодиода производится на основе его номинальной рабочей силы тока.
Онлайн калькулятор
Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал.
Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W.
При использовании питания на 12В, последовательно можно подключить до 3 LED.
Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.
Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.
Основные параметры
Отличие характеристик кристаллов для дешевых ЛЕД
Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми. Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно.
Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло. Чем равномернее они горят, тем меньше разброс.
Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.
Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от 10W до 100W снижение растёт с 12В до 36В.
Этот параметр должен быть указан в технических характеристиках LED чипа и зависит от назначения:
- цвета синий, красный, зелёный, желтый;
- трёхцветный RGB;
- четырёхцветный RGBW;
- двухцветный, теплый и холодный белый.
Особенности дешёвых ЛЕД
Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Всё самое плохое обычно делается под брендом Epistar.
Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм.
В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W.
Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.
Китайские светодиодные лампы кукурузы
Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность.
Автомобильные лампы на самых слабых лед 0,1W
Чтобы сэкономить денежку, мои светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц.
После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло.
Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.
Источник: http://led-obzor.ru/raschet-rezistora-dlya-svetodioda-kalkulyator
Онлайн расчет резистора для светодиода
Питание светодиодов не такой простой вопрос, как может показаться. Они крайне чувствительны к режиму, в котором работают и не терпят перегрузок. Самое главное, что нужно запомнить – полупроводниковые излучающие диоды питают стабильным током, а не напряжением.
Даже идеально стабилизированное напряжение не обеспечит поддержки заданного режима, это следствие внутренней структуры и принципа действия полупроводников. Тем не менее при грамотном подходе светодиоды можно подключать к питанию через токоограничивающий или добавочный резистор.
Его расчет сводится к элементарному подбору такого сопротивления, на котором будут падать лишние Вольты при заданной величине тока. Давайте рассмотрим, как рассчитать его номинал вручную или воспользоваться онлайн калькулятором.
Хоть и главным параметром для питания светодиода является ток, но есть и такой, как падение напряжения. Это величина необходимая для того, чтобы он зажегся. Отталкиваясь от нее проводят вычисления ограничительного резистора.
Типовые напряжения LED разных типов:
Цвет | Напряжение, В |
Белый | 2.8-3.2 для маломощных, 3.0 и выше для мощных (более 0.5 Вт) |
Красный | 1.6-2.0 |
Зеленый | 1.9-4.0 |
Синий | 2.8-3.2 |
Желтый, оранжевый | 2.0-2.2 |
ИК | До 1.9 |
УФ | 3.1-4.4 |
Внимание! Если вы не можете найти документацию на имеющийся элемент – при использовании онлайн калькулятора возьмите данные из этой таблицы.
Чтобы сократить теорию, давайте сразу на практике рассчитаем сопротивление для подключения белого светодиода к бортовой цепи автомобиля 12В. Её фактическое значение при заведенном двигателе доходит до 14,2 В, а иногда и выше, значит его и берем для расчетов.
Тогда расчёт сопротивления для светодиода выполняют по закону Ома:
R=U/I
На светодиоде должно упасть усреднено 3 Вольта, значит нужно компенсировать:
Uрез=14,2-3=11,2 В
У обычного 5 мм светодиода номинальный ток равен 20 мА или 0,02 А. Рассчитываем сопротивление резистора, на котором должно упасть 11,2 В при заданном токе:
R=11,2/0,02=560 Ом или ближайший в большую сторону
Чтобы добиться стабильного питания и яркости в цепь питания дополнительно устанавливают стабилизатор L7805 или L7812 и проводят расчет относительно питающих 5 или 12 Вольт соответственно.
Как рассчитать резистор для подключения светодиода к сети 220 Вольт? Такой вопрос возникает, когда нужно сделать какую-то индикацию или маячок. Расчёт сопротивления в этом случае выглядит так:
Uрез=220-3=217 В
R=217/0,02=10850 Ом
Так как любой диод пропускает ток в одном направлении, то обратное напряжение приведет к тому, что он выйдет из строя. Значит параллельно светодиоду устанавливают еще один такой же или шунтирующий обычный маломощный выпрямительный диод, например, 1n4007.
С помощью нашего онлайн калькулятора можно рассчитать сопротивление для одного или нескольких соединенных последовательно или цепи параллельных светодиодов:
Если светодиодов несколько, тогда:
- Для последовательного соединения резистор рассчитывают с учетом суммы падений на каждом элементе.
- Для параллельного соединения сопротивление рассчитывают с учетом суммы токов каждого светоизлучающего диода.
Также нельзя забывать о мощности резистора, например, во втором примере с подключением цепи к сети 220В на нем будет выделяться мощность равная:
P=217*0,02=4,34 Вт
В данном случае это будет довольно крупный резистор. Чтобы уменьшить эту мощность, можно еще сильнее ограничить ток, например, в 0,01А, что снизит эту мощность в двое. В любом случае номинальная мощность сопротивления должна быть больше той, которая будет выделяться в процессе его работы.
Для долгой и стабильной работы излучателя при подключении к сети используйте в расчетах напряжение слегка выше номинального, то есть 230-240 В.
Если вам сложно посчитать или вы не уверены в чем-то, тогда наш онлайн калькулятор для расчета резистора для светодиода быстро подскажет вам, какой нужен резистор из стандартного размерного ряда, а также его минимальную мощность.
Источник: https://samelectrik.ru/rezistor-dlya-svetodioda.html
Расчет и подбор сопротивления для светодиода
Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.
Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.
Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.
Теория
Математический расчет
Ниже представлена принципиальная электрическая схема в самом простом варианте.В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I).
Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED).
Используя второе правило Кирхгофа, получается следующее равенство:или его интерпретация
Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода.
На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение.
Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.
Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора:ULED является паспортной величиной для каждого отдельного типа светодиодов.
Графический расчет
Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения.
Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED).
В итоге все данные для расчета сопротивления получены.
Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.
Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED.
Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА.
Используя закон Ома, рассчитываем сопротивление:Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:
В каких случаях допускается подключение светодиода через резистор?
Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным.
Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт.
Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.
Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В.
В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно.
Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера.
Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.
Примеры расчетов сопротивления и мощности резистора
Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.
Cree XM–L T6
В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А.
В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности.Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%.
Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток.
Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.
Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.
Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора.
Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96).
В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.
Мощность, рассеиваемая резистором, составит:
Вычислим КПД собранного светильника:
Пример с LED SMD 5050
По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.
Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В.
Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую.
Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А.Ближайшее стандартное значение – 30 Ом.
Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.
Онлайн-калькулятор
Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную.
Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания.
Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.
Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.
Источник: https://ledjournal.info/spravochnik/raschet-rezistora-dlya-svetodioda.html
Расчет резистора для светодиода: онлайн калькулятор
Перед тем, как рассчитать сопротивление для светодиодов, стоит разобраться, что вообще такое резистор, зачем он нужен и почему нельзя подключать led лампы без него. Но особенно эта статья касается тех, кто уверен, что расчет резистора – лишняя трата времени, и именно его диод рассчитан на напряжение питания в 3 вольта и т.д.
Образные сравнения
Конечно, мы не обращаемся только к водителям, но даже те, кто в авто ездит в качестве пассажира, догадываются, зачем нужна коробка передач. Примитивно – для разгона, набора скорости и езды. На первой передаче мы получаем мощную тягу, и машина трогается с места, получаем ускорение. На первой передаче мы не разгонимся.
На последней – все с точностью до наоборот, тяги минимум, зато скорость максимум. На ровной дороге, когда мы разогнались, тяга не нужна, нужна только скорость.
Но если на вязкой грунтовой дороге, то для аналогичной скорости понадобится больше тяги. Тяжелая поверхность усиливает сопротивление бампера и чтобы его побороть, мы снижаем передачи.
На пятой скорости по огороду после дождя не проедешь – моментально заглохнешь.
А теперь приступаем к образам – лампочки с проводами сравниваем с дорогой (провод) и грунтом (лампы). Напряжение это тяга, ток – скорость. Понятно, что скорость нужна всегда, но задать ее можно тягой.
Для того, чтобы ток преодолел сопротивление, надо напряжение, причем ровно в нужном количестве. Если напряжения больше, ток не побежит быстрее, соответственно, оно будет падать. Какая разница между Жигулем и внедорожником на ровной дороге при скорости 60 км/ч? Никакой! А при той же скорости, но на вязкой грунтовке? Огромная.
У Мерседеса тяги кратно больше. Если не контролировать ток, нагрузка будет постоянно брать напряжение, пока не вылетит. Соответственно, нужно найти такой ограничитель, который будет давать ровно столько напряжения (тяги), чтобы хватало на преодоление сопротивления током.
И вот в качестве такого ограничителя в диодном освещении выступает резистор.
Зачем светодиодам резистор?
И снова, перед тем, как сделать расчет сопротивления резистора для светодиодов, несколько слов по матчасти.
Поскольку самыми популярными лампочками у нас до сих пор остаются с нитями накаливания, то все знают, что для включения нужен прямой контакт с источником питания (выключатель, розетка и т.д.).
Сгореть лампочка может только, когда лопается вольфрамовая нить, а это происходит при увеличении напряжения (хорошенько встряхнуть в расчет не берем).
В данном случае сама нить и является резистором, через которую движется ток.
Светодиод как сложный полупроводник – далеко не то же самое, что лампа накаливания. Это токовый прибор, который сам набирает напряжение и рассчитан на определенный его максимум. Например, если светодиод рассчитан на напряжение 1,8V, а поступает 1,9V, то он сгорает.
Говоря простым языком, между кристаллами и источником питания начинается битва – кто кого. Если лед лампа принудительно снизила напряжение в слабом источнике, она продолжает работать, не получилось – сгорела.
Резистор в данном случае направлен на то, чтобы ослабить источник питания и помочь снизить напряжение на кристаллы.
ВИДЕО: Как работает резистор
Зачем каждому светодиоду свой резистор?
Существует 2 варианта подключения резисторов:
- последовательно;
- параллельно.
При последовательном включении все лампочки в одной цепи по которой течет ток с одной и той же скоростью. Здесь достаточно только одного резистора, который изначально снижает напряжение источника и далее уже процесс идет циклично.
Как правильно подключать резистор к светодиодам
Параллельное включение для светодиодов – самый худший вариант. Абсолютно одинаковых экземпляров нет, и у каждого параметры напряжения хоть немного, но отличаются.
При параллельном подключении ток, который нужен всем светодиодам, возьмет тот, у которого самое маленькое напряжение. И поскольку тока много, он моментально сгорает.
Наступает очередь следующего с наименьшим напряжением, и буквально в течение нескольких минут мы имеем груду сгоревших лед лампочек, хотя и с резистором.
Схема последовательного подключения резистора для светодиода
Замечания и рекомендации
{add_n26}
На каждой коробке с лед лампами указано напряжение, но не питания, а то, которое им нужно для работы.
Для того, чтобы определить напряжение на резисторе, можно воспользоваться онлайн калькулятором (в конце статьи) или отнять от питания то, которое указано на лампочке. Чтобы определить ток, получившуюся разницу делим на сопротивление.
На некоторых сайтах можно встретить заявления о том, что синим и зеленым лед лампам не нужны резисторы, так как он уже встроен в них с сопротивлением 20 Ом. Нужны! Это в любом случае светодиод – токовый прибор, который сам набирает напряжение, а такого сопротивления недостаточно для ослабления источника питания.
Если нет возможности подключить лампы последовательно, можно прозвонить каждую по отдельности и выбрать те, которые максимально приближены друг к другу. Сразу скажем, это очень ненадежно. Да, продержится такое освещение не сутки, а дольше, но о заявленных 50 тысячах часов можно в принципе забыть.
Разновидности
Разные виды резисторов для светодиодов
Именно на наших просторах можно найти всего 3 типа:
- 12V – ограничивающий при достижении заданного порога;
- овтомобильный – на тот случай, если вы решили сделать легкий тюнинг и подключить светодиоды в качестве подсветки;
- обманка – скорее вспомогательный инструмент для выявление проблем в сети.
Как правильно подсчитать напряжение и сопротивление
Для мастеров светотехики такая задача на раз-два, но всем остальным мы предлагаем воспользоваться онлайн-сервисом, который рассчитывает параметры на основе номинальной рабочей силы тока.
Обращаем ваше внимание, что данные, полученные в калькуляторе, будут приблизительными, соответственно, выбираете самый близкий по значению стандартный номинал.
Можно не трогать калькулятор для светодиодов, если резистор — переменный или подстроечный.
Как подключать
{add_n27}
Независимо от того, какой резистор выбран – подстроечный, переменный или постоянный, нет никакой разницы, как его подключать. У него нет полярности. Основная задача — внутреннее сопротивление и мощность рассеивания. Если мощность превышается, резистор сгорает. Так что правильно рассчитывайте и пользуйтесь с удовольствием.
ВИДЕО: Расчет резистора к светодиодам
Источник: http://www.DiodGid.ru/raschet-rezistora/
Калькулятор резистора для светодиода
Один светодиод
Последовательное соединение светодиодов
Параллельное соединение светодиодов
Расчёт резистора для светодиода
Светодиоды. Виды, типы светодиодов. Подключение и расчёты..
Вот так светодиод выглядит в жизни :
А так обозначается на схеме :
Для чего служит светодиод?
Светодиоды излучают свет, когда через них проходит электрический ток.
Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.
Подключение и пайка
Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку. Если вы видите внутри светодиода его внутренности – катод имеет электрод большего размера (но это не официальные метод).
Светодиоды могут быть испорчены в результате воздействия тепла при пайке, но риск невелик, если вы паяете быстро. Никаких специальных мер предосторожности применять не надо для пайки большинства светодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – для теплоотвода.
Проверка светодиодов
Никогда не подключайте светодиодов непосредственно батарее или источнику питания!
Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его. Светодиоды должны иметь ограничительный резистор.Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее. Не забывайте подключать светодиоды правильно, соблюдая полярность!
Цвета светодиодов
Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета.
Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…
Многоцветные светодиоды
Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.
Расчет светодиодного резистора
Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенно…
Резистор R определяется по формуле :
R = (V S – V L) / I
V S = напряжение питания
V L= прямое напряжение, расчётное для каждого типа диодов (как правило от 2 до 4 вольт)
I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для вашего диода.
Если размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала. На самом деле вы вряд-ли заметите разницу… совсем яркость свечения уменьшится совсем незначительно.
Например: Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A, R = (- 9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше).
Вычисление светодиодного резистора с использованием Закон Ома
Закон Ома гласит, что сопротивление резистора R = V / I, где :
V = напряжение через резистор (V = S – V L в данном случае)
I = ток через резистор
Итак R = (V S – V L) / I
Последовательное подключение светодиодов.
Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды. Все светодиоды, которые соединены последовательно, должны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.
Пример расчета :
Красный, желтый и зеленый диоды – при последовательном соединении необходимо напряжение питания – не менее 8V, так 9-вольтовая батарея будет практически идеальным источником.
V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются).
Если напряжение питания V S 9 В и ток диода = 0.015A,
Резистором R = (V S – V L) / I = (9 – 6) /0,015 = 200 Ом
Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).
Избегайте подключения светодиодов в параллели!
Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея…
Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый.., что делает такое подключение практически нерабочим.
Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода.
Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.
Мигающие светодиоды
Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.
Источник: http://xn—-7sbgjfsnhxbk7a.xn--p1ai/kalkulyator-rezistora-dlya-svetodioda
Расчет резистора для светодиода. Онлайн калькулятор
Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.
Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.
Расчет резистора для светодиода
Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:
где:
- V — напряжение источника питания
- VLED — напряжение падения на светодиоде
- I – рабочий ток светодиода
Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:
Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.
Давайте, на примере выполним расчет сопротивления резистора для светодиода.
Мы имеем:
- источник питания: 12 вольт
- напряжение светодиода: 2 вольта
- рабочий ток светодиода: 30 мА
Рассчитаем токоограничивающий резистор, используя формулу:
Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).
Последовательное соединение светодиодов
Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.
Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.
Пример расчета сопротивления резистора при последовательном подключении
В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.
Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.
Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:
Резистор должен иметь значение не менее 183,3 Ом.
Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)
Параллельное соединение светодиодов
Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.
Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.
И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.
Онлайн калькулятор расчета резистора для светодиода
Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:
примечание: разделителем десятых является точка, а не запятая
Формула расчета сопротивления резистора онлайн калькулятора
Сопротивление резистора = (U– UF)/ IF
- U – источник питания;
- UF – прямое напряжение светодиода;
- IF – ток светодиода (в миллиамперах).
Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.
Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.
Источник: http://www.joyta.ru/7705-raschet-rezistora-dlya-svetodioda-onlajn-kalkulyator/
Конвертер величин
Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.
Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.
Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.
Инфракрасный | Арсенид галлия (GaAs) | 850-940 нм | |
Красный | Арсенид-фосфид галлия (GaAsP) | 620-700 нм | 1.6—2.0 В |
Оранжевый | Арсенид-фосфид галлия (GaAsP) | 590-610 нм | 2.0—2.1 В |
Желтый | Арсенид-фосфид галлия (GaAsP) | 580-590 нм | 2.1—2.2 В |
Зеленый | Фосфид алюминия-галлия (AlGaP) | 500-570 нм | 1.9—3.5 В |
Синий | Нитрид индия-галлия (InGaN) | 440-505 нм | 2.48—3.6 В |
Белый | Диоды с люминофором или трехцветные RGB | Широкий спектр | 2.8—4.0 В |
Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:
Вольтамперные характеристики типичных светодиодов различных цветов
Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов.
Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения.
Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.
Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает.
Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя.
Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.
Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня
Формулы для расчетов
Ток через ограничительный резистор Rs можно рассчитать по формуле закона Ома, в которой из напряжения питания Vs вычитается прямое падение напряжения на светодиоде Vf:
Здесь Vs напряжение источника питания в вольтах (например, 5 В от шины USB), Vf прямое падение напряжения на светодиоде и I прямой ток через светодиод в амперах. Значения Vf и If приводятся в технических характеристиках светодиода. Типичные значения Vf показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.
После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор Rs = 145 ом, мы (и калькулятор) выберем резистор Rs = 150 ом.
Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле
Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с
Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.
А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:
Тогда общее потребление будет равно
КПД схемы включения светодиода с ограничительным резистором:
Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:
Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами
Светодиодные массивы
Одиночный светодиод можно зажигать с помощью токоограничительного резистора.
Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в рекламе и для других целей, необходимы специализированные источники питания.
Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.
Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно.
Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах.
Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.
Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет.
В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду. Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов.
Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств.
Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.
Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи.
Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются.
В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.
При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.
Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них.
При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении.
Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.
В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД.
Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.
Расчет токоограничительных резисторов
Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как
Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как
Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.
Количество цепей с максимальным количество светодиодов в цепи Nstrings:
Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :
Если Nremainder LEDs = 0, то дополнительной цепи не будет.
Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:
Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:
Общая мощность PLED, рассеиваемая всеми светодиодами:
Мощность, потребляемая всеми резисторами:
Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей.
В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута.
Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.
Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.
Рассчитаем общую мощность, потребляемую всеми резисторами:
Рассчитаем общую мощность, потребляемую светодиодным массивом:
Рассчитаем ток, который должен обеспечить источник питания:
И наконец, рассчитаем КПД нашего массива:
Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.
Источник: https://www.translatorscafe.com/unit-converter/RU/calculator/led-resistor/
Расчет резистора для светодиода при различных соединениях
Подключать светодиоды — дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.
Сегодня рассмотрим как правильно рассчитать резистор для светодиода и подключить его, чтобы он горел долго и на радость потребителю.
Главный параметр у любого светодиода — ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.
Ток на светодиодах ограничивается резистором — это самый дешевый вариант. Но есть и более «продвинутый» — использовать светодиодный драйвер.
По факту, использование резисторов — пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно .
Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.
Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.
Существует несколько типов подключения светодиодов:
к оглавлению ↑
Расчет резистора для светодиода
Вспомним закон Ома:
U=I*R
R=U/I где,
R — сопротивление — измеряется в Омах
U — напряжение- измеряется в вольтах (В)
I — ток- измеряется в амперах (А)
Пример расчета резистора для светодиода:
Допустим, источник питания выдает 12 В: Vs=12 В
Светодиод — 2 В и 20 мА
Чтобы рассчитать резистор нам необходимо преобразовать миллиамперы в амперы:
20 мА=0,02 А.
R=10/0.02=500 Ом
На сопротивление рассеивается 10 В (12-2)
Посчитаем мощность сопротивления:
P=U*I
P=10*0.02 A=0.2 Вт
Необходимый резистор — R=500 Ом и Р=0,2 Вт
к оглавлению ↑
Расчет резистора для светодиода при последовательном соединение светодиодов
Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При таком соединении падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В
Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях.
Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если «на пальцах», то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.
R=6/0.02=300 Ом.
Р=6*0,02=0,12Вт
Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.
Характеристики светодиода и источника питания аналогичные предыдущему примеру.
к оглавлению ↑
Расчет резистора для светодиода при параллельном соединении
При таком соединении плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.
Расчет резистора для светодиода в этом случае аналогичен первому случаю.
к оглавлению ↑
Расчет резистора для светодиода при последовательно-параллельное соединении
Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным.
Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А.
Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.
Расчет резистора для светодиода в этом случае будет таким:
Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).
При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.
Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.
В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».
к оглавлению ↑
Видео на тему правильного расчета резисторов для LEDs
Источник: https://leds-test.ru/raschet-rezistora-dlya-svetodioda/