Сегодня люди все чаще стали использовать в быту энергосберегающие лампы. Популярность этих ламп вызвана, прежде всего, их экономичным потреблением энергии. Ведь энергосберегающая лампа позволяет сэкономить деньги. В отличие от лампы накаливания ЭСЛ дает больший световой поток при меньшей потребляемой мощности.
Устанавливается энергосберегающая лампа в такой же патрон, что и обычная лампа накаливания. Достоинства ЭСЛ очевидны, в то время как недостатков практически нет. Поэтому неудивительно, что многие люди уже давно перешли на использование так называемых экономок вместо обычных лампочек накаливания.
Компактная энергосберегающая лампа является разновидностью люминесцентных ламп, уже ставших нам привычными. Данные ЭСЛ легко устанавливаются в патрон вместо лампы накаливания. В нашу жизнь уже прочно вошли лампы такого типа. И вскоре их будут называть не «энергосберегающими лампами», а просто «лампами».
Многие видят в работе этой лампы какую-то загадку, несмотря на всю простоту устройства. Рассмотрим устройство энергосберегающей лампы и попробуем разобраться в принципе ее работы.
Как устроена энергосберегающая лампа
Устройство практически всех энергосберегающих ламп одинаковое. В состав лампы входит несколько деталей. Газоразрядная трубка – это видимая часть лампы, излучающая свет.
Газоразрядная трубка соединяется с корпусом. В корпусе находится внутренняя часть лампы, представляющая собой электронную схему пуска и питания. По-другому эту схему называют электронным балластом.
Электронная схема выполняет задачу зажигания лампы.
Цоколь имеет контакты для питания лампы и резьбу для вкручивания в патрон. Обычная лампа накаливания имеет практически такой же цоколь, что и ЭСЛ. Устанавливать компактную энергосберегающую лампу можно в небольшие светильники. Существует несколько типов цоколей, которые распространены в России: G4, GU10, E40, E27, E14, G5.3.
Энергосберегающие лампы с цоколем Е40, Е27 и Е14 можно устанавливать в патроны, предназначенные для обычной лампы накаливания. Е27 – патрон стандартный бытовой, имеет резьбу 27 мм, Е14 – уменьшенный патрон, резьба которого 14 мм, Е40 – патрон с резьбой 40 мм, относится к стандартным промышленным патронам.
Трубка, запаянная с двух сторон, называется колбой энергосберегающей лампы. Электроды находятся на противоположных концах этой колбы. ЭС лампа имеет изогнутую колбу, покрытую слоями люминофора. Эта колба содержит инертный газ и небольшое количество ртутных паров. Ионизация паров ртути является причиной свечения лампочки при подключении к ней питания.
Когда на электроды подается напряжение, через них течет ток прогрева. Он разогревает электроды, из-за чего протекает термоэлектронная эмиссия. Когда электроды достигают определенной температуры, они испускают поток электронов.
Сталкиваясь с атомами ртути, электроны вызывают излучение ультрафиолета, после чего ультрафиолетовое излучение попадает на люминофор, который преобразовывает это излучение в видимый свет.
Цветовая температура лампы зависит от типа люминофора, она может быть 2700-6500К.
Помните, что пары ртути опасны для организма человека, поэтому если энергосберегающая лампа разбилась очень важно правильно утилизировать осколки и обработать место.
Вы ни когда не задумывались почему в энергосберегающей лампе колба имеет причудливо изогнутую форму? Поверьте это сделано не с проста. Изогнутая форма колбы позволяет уменьшить длину всей лампы.
За счет спиральной намотки длину самой газоразрядной трубки можно увеличить при этом длина лампы при такой форме будет уменьшена.
Если бы этого не делали то не каждая такая лампа помещалась в обычный светильник или люстру.
Для изготовления корпуса лампы применяется негорючий пластик. Колба люминесцентной лампы крепится в верхней части. Пускорегулирующее устройство, соединительные провода и предохранитель находятся в корпусе. На поверхности лампы есть маркировка, в ней указана цветовая температура, мощность, напряжение питания.
Внутреннее устройство энергосберегающей лампы
Внутри корпуса ЭСЛ находится круглая печатная плата. На ней собран высокочастотный преобразователь.
В результате использования довольно высокой частоты преобразования нет того «моргания», которое свойственно лампам с электромагнитным балластом (где используется дроссель), работающим на частоте 50 Гц.
Современные лампы имеют пускорегулирующий аппарат, оснащенный помехозащитным фильтром. Фильтр защищает от появления помех в сети электропитания.
Добраться до электронной схемы легко. Внимательно рассмотрите лампу, лучше использовать перегоревшую. Кажется, что корпус лампы разобрать невозможно. Но это ошибочное мнение. Ближе к колбе в верхней части лампы есть неглубокая канавка.
Возьмите небольшую отвертку или узкое лезвие и попытайтесь разделить корпус. После небольшого усилия у вас в руках будет уже две части. В первый раз могут возникнуть сложности, зато потом эта операция будет занимать считанные секунды.
После отделения цоколя от колбы, эти элементы соединяются между собой проводами которые необходимо аккуратно отделить от платы. Сделать это можно с помощью паяльника, нагрев место пайки, либо просто разрезав провода (но режьте так чтобы, потом можно было их восстановить).
В некоторых видах ламп провода, которые идут от электронной платы в газоразрядную трубку, просто намотаны на специальные штырьки. После того как провода будут откинуты только тогда вы сможете выполнить дальнейший осмотр и диагностику лампы. Далее отсоедините цоколь от электронного блока. Для удобства наращивания проводов, их нужно разрезать посередине.
Внутри вы увидите круглую плату. Это и есть внутреннее устройство энергосберегающей лампы благодаря которому она работает. От перегрева радиоэлементы платы, как правило, почерневшие (если у вас в руках нерабочая лампа).
Проводки от колбы примотаны к четырем штырькам, имеющим квадратное сечение. Они расположены попарно по краям платы. Никакой пайки проводов нет, они именно примотаны, на что стоит обратить внимание.
Предохранитель является основным элементом схемы. Он защищает от перегорания все компоненты электронной платы. Иногда вместо предохранителя используется входной ограничительный резистор. Когда в лампе возникает какая-либо неисправность, в цепи растет ток, что приводит к сгоранию резистора, тогда цепь питания разрывается.
Один вывод резистора соединен с платой, а второй – с резьбовым контактом цоколя. Усажен резистор в термоусадочной трубке. Пульсации выпрямленного напряжения сглаживает конденсатор. Дроссель или тороидальный трансформатор имеет кольцевой магнитопровод, на нем расположены как правило 3 обмотки.
Мигание лампы при частоте сети 50 Гц случается 100 раз в секунду.
Поэтому энергосберегающая лампа может неблагоприятно сказываться на общем физическом состоянии человека, его работоспособности, особенно если он находится в условиях такой освещенности длительное время.
Все эти вредные составляющие устранены в современных электронных балластах. Поэтому на здоровье окружающих не оказывается никакого негативного влияния.
Современный электронный балласт представляет собой небольшую электронную схему, в ней реализованы функции зажигания лампы без миганий, а также плавный разогрев спиралей катодов лампы.
В современной энергосберегающей лампе происходит свечение газа с частотой 30-100 кГц. Шума при работе абсолютно нет, а электромагнитное поле практически отсутствует.
На высокой частоте (30-100кГц) за счет близкого к единице коэффициента потребления электроэнергии формируется повышенная светоотдача.
Лампа может зажигаться с полным накалом практически сразу, либо яркость может нарастать постепенно. Это зависит от схемы балласта. В некоторых лампах процесс нарастания яркости может занимать пару минут.
В таком случае сразу после включения наблюдается полумрак. К сожалению, на энергосберегающей лампе не указывают, какой используется алгоритм включения.
Понять алгоритм можно только после того, как вы вкрутили лампочку в патрон.
Принцип работы энергосберегающей лампы
С вопросом как устроена энергосберегающая лампа, мы разобрались, теперь давайте в общих чертах разберемся, как работает лампа.
С обеих сторон внутри колбы находится два электрода анод и катод, в виде спиралей. Разряд между электродами возникает после того, как произошла подача питания. Ток протекает через смесь ртутных паров и инертного газа. Лампа зажигается, когда быстро движущиеся электроны сталкиваются с медлительными атомами ртути.
Однако, большая часть светового излучения (98%), производимого энергосберегающей лампой – это ультрафиолет. Для человеческого зрения он невиден. Видимый же человеку свет, который идет от лампы, возникает благодаря слоям люминофора.
Под воздействием ультрафиолетового излучения эти слои светятся. От химического состава люминофора зависит цветность освещения, которую вырабатывает люминесцентная лампа. Люминофор нанесен на внутреннюю поверхность стеклянной колбы.
Похожие материалы на сайте:
- Ремонт энергосберегающих ламп
- Технические характеристики ЭСЛ
Источник: https://electricvdome.ru/osvechenie/ustrojstvo-energosberegayushhej-lampy.html
Энергосберегающая лампа: ремонт своими руками — мой опыт
Когда производители начали массовый выпуск компактных люминесцентных ламп, то заявили, что они экономят энергию. А деньги? Ведь их ресурс заявлен 1000 часов, как и у лампочки Ильича на 60 ватт, а стоят они дороже.
Напрашивается решение — если перегорела энергосберегающая лампа: ремонт своими руками делать надо и продлевать ей жизнь.
Дальше делюсь личным опытом в этом вопросе, подробно поясняю основные этапы технологии поиска неисправностей фотографиями и схемами.
Устройство КЛЛ и физические процессы, вызывающие свечение газового разряда обычной люминесцентной лампы, идентичны. Отличия же заключаются в элементной базе, из которой создается схема пускорегулирующей аппаратуры и габаритах светильника.
Компактная лампа вкручивается в обычный патрон, а простая люминесцентная выполняется длинной трубкой.
На примере последней удобнее объяснять основные принципы работы схемы освещения, которые необходимы для ремонта обеих конструкций. Без их понимания браться за паяльник и отвертку нет смысла.
Как работают люминесцентные лампы: 4 фазы запуска и отключения — простое объяснение
Внутри герметичного пространства стеклянной колбы находятся пары ртути, создающие ультрафиолетовый спектр излучения. В видимый свет его преобразует люминофор, нанесенный по внутренней поверхности трубки.
Газовый разряд, вызывающий свечение, протекает между электродами, образованными нитями накала. Для его розжига используется дроссель и стартер.
Фаза запуска №1. Разогрев нитей накала
При подаче напряжения выключателем на схему лампы в ней по замкнутой цепи начинает протекать переменный ток. Его путь: дроссель, одна нить накала, емкостное сопротивление стартера, вторая нить накала.
- Металл обоих электродов разогревается, вокруг них создается электронная эмиссия, облегчающая возникновение тока газового разряда.
- Фаза запуска №2. Замыкание контакта стартера
- Дроссель, обладая индуктивным сопротивлением, первоначально накапливает электромагнитную энергию.
Внутри стартера между его электродами создается тлеющий разряд, нагревающий биметаллический контакт. Последний начинает выгибаться и замыкает дополнительную цепочку, подключенную параллельно электродам. Через нее начинает протекать ток.
Тлеющий разряд прекращается. Биметалл остывает.
- Фаза запуска №3. Газовый разряд
- Остывший биметалл стартера отключает контакт дополнительной цепочки.
- Дроссель при разрыве цепи формирует импульс повышенного напряжения благодаря наложению ЭДС самоиндукции на сигнал бытовой сети 220 вольт.
- Большой всплеск напряжения между электродами колбы пробивает электрическое сопротивление газовой среды, создается ток разряда в ней.
Дроссель же с момента возникновения газового разряда своим сопротивлением ограничивает ток в цепи, предотвращает дуговое замыкание. Лампа светится.
- На этом этапе стартер уже выполнил свою задачу и в работе не участвует.
- Фаза запуска №4. Снятие напряжения выключателем
- Разрыв цепи питания прекращает протекание газового разряда и свечение лампы.
Изложенная технология запуска за счет предварительного разогрева нитей накала называется горячей. Она обеспечивает наиболее экономный режим создания нагрузок на встроенные электроды, обеспечивает им повышенный ресурс.
Люминесцентную лампу можно запустить в работу быстрее, без прогрева нитей. Для этого между ними достаточно приложить импульс повышенного напряжения. Этот метод называется холодным запуском. Его применение значительно сокращает ресурс оборудования.
Энергосберегающие лампы: принцип работы осветительной схемы в картинках
Принцип работы КЛЛ такой же, как я показал кратко выше. Здесь происходят те же процессы:
- прогрев нитей накала для обеспечения электронной эмиссии;
- пробой газовой среды импульсом повышенного напряжения;
- предотвращение дугового замыкания.
Только все эти функции возложены на электронику ЭПРА — пускорегулирующую аппаратуру или электронный пускатель, встроенный в стандартный цоколь лампы.
Он изготавливается из негорючего пластика, а электронный пускатель выполняется на обычной печатной плате круглой формы.
Встречаются и другие конструкции, когда механизм ЭПРА исполнен двумя раздельными блоками:
- сетевым выпрямителем с высокочастотным фильтром подавления исходящих помех;
- в/ч преобразователем.
Подобная схема распространена в импульсных блоках питания сложных цифровых электроприборов.
Более подробно описание ее составных частей буду приводить ниже.
Энергосберегающая лампа: ремонт с пошаговыми фотографиями
После знакомства с конструкцией можно сделать вывод, что поломка может возникнуть в одном из двух мест:
- внутри колбы;
- или в электрической схеме.
Реально найти неисправность можно только проведением внутреннего осмотра.
Как разобрать энергосберегающие лампы: советы для новичков
Буду описывать и показывать фотографиями свой личный опыт. Допускаю, что у каких-то изделий могут быть отличия.
Корпус светильника состоит из двух разъемных частей. Щель между ними малозаметна. Она может быть заполнена герметиком или быть без него. Определить это можно тонким, острым лезвием. Например, канцелярским ножом.
Первоначально мне пришлось прорезать по окружности слой наполнителя. Но тонкое лезвие под приложенным усилием на изгиб стало сильно гнуться.
Тогда я взял нож электрика. Его толстый клинок приспособлен к работе даже с металлами. Осторожно стал раздвигать им образовавшуюся щель в противоположные направления.
С одной стороны пришлось даже подрезать остатки клея. Работал очень осторожно. Можно легко продавить пластик и повредить корпус. Тогда возникнут дополнительные проблемы.
Когда раздвигаешь щель ножом или тонкой отверткой, то разъединяется зацепление верхней и нижней части: выступы выдавливаются из пазов.
На очередном фото их лучше видно.
Так выглядят две встроенные платы, соединенные между собой проводами.
Плата сетевого фильтра с выпрямителем подключена проводами к цоколю и преобразователю.
Она же снизу закрыта крышкой в виде диэлектрического основания с защелками.
Она предотвращает соприкосновение двух плат, защищает от создания короткого замыкания и обеспечивает промежуток для отвода тепла за счет естественной вентиляции.
После того как удалось разобрать энергосберегающую лампу сразу проводите внутренний осмотр всех ее частей. Обращайте внимание на почернения, обугливания, другие повреждения.
В моем случае сами платы были чистыми, следов нагара на них не было.
Дорожки тоже находились в рабочем состоянии. Пайка радиодеталей выполнена нормально, явных дефектов не просматривается.
Раз визуальный осмотр электронных компонентов не выявил повреждений, то дальше следует осматривать колбу.
Ремонт оборванной нити накаливания: 2 доступных способа
Первый беглый взгляд на выход нитей накаливания показал на повреждение изоляции, выгорание части наполнителя от повышенного нагрева.
Интересно то, что медные проволоки выводов от нитей накаливания просто намотаны на штырьки платы. Никакой пайки нет. Металл меди почернел, покрыт слоем окислов.
Это косвенный признак повреждения нитей накаливания. Сразу можно сделать вывод, что по ним проходили большие токи, а отвод тепла явно не достаточен. Одна из причин нагрева — повышенное сопротивление места контактов из-за отсутствия пайки.
Дальше необходимо определить исправность электродов, способность их вызывать электронную эмиссию и осуществлять горячий запуск энергоберегалки. Делать это можно только электрическими замерами, а к ним надо подготовиться.
Потребуется разобрать цепочку схемы разогрева нитей накала для прозвонки их целостности. Это удобно делать пинцетом.
Разомкнутая цепь выглядит следующим образом.
Для выполнения электрической проверки нам вполне достаточно отмотать и развести всего одну проволочку, а вторую трогать пока не рекомендую.
Подготовленную к замеру схему платы показываю фотографией ниже. На ней же хорошо видны прогары изоляции.
Далее просто берем цифровой мультиметр или обычный тестер и выполняем им замер электрического сопротивления нитей.
Таким способом я выявил, что с одной стороны колбы нить накала у лампы перегорела и оборвана, а с противоположной — целая. Пометил их для памяти шариковой ручкой и восстановил намотку отключенных проволочек тем же пинцетом.
Дальше предстоит выбор способа ремонта и запуска энергосберегающей лампы по одному из двух вариантов:
- горячим методом с бережным розжигом оставшейся в работе нити накаливания;
- быстрым холодным способом.
Я выбрал первый. Его и описываю вначале.
Бережной ремонт колбы энергосберегающей лампы
Здесь никаких хитростей нет. Просто надо учесть величину электрического сопротивления нити накаливания. Обычно она где-то в пределах 4÷5 Ом. Потребуется подобрать такой же резистор.
Перебрал одну коробку. В ней его не оказалось, а копаться в остальном запасе было лениво. Решил показать выход из такой ситуации. Спаял составную конструкцию. Для наглядности сделал ее длинной.
Получилась такая смешная схема: она вполне годится для понимания технологии ремонта светильника, а в реальной жизни потребуется найти нормальный резистор. Это не сложно. Его, кстати, надо подобрать по мощности не менее ватта, а лучше 2.
Для наглядности это составное сопротивление примотал проволоками к ножкам оборванной нити: зашунтировал им оборванный контакт. Цоколь вкрутил в патрон настольной лампы (абажур снят — смотрите на фото выше).
Подаю на собранную схему напряжение и вижу светящуюся рабочую лампочку.
Остается только подобрать нормальный резистор, запаять его на место составного и собрать все в обратной последовательности внутри диэлектрического корпуса.
Думаю, что особых знаний тут не требуется. На сём перехожу к объяснению ремонта колбы вторым методом.
Вывод: замена оборванной нити накаливания шунтирующим резистором у энергосберегающей и люминесцентной лампы восстанавливает оборванную цепь прохождения тока запуска через стартер или ЭПРА.
Схема холодного запуска энергосберегающей лампы с оборванной нитью
В этой ситуации газовый разряд внутри колбы создается банальным повышением напряжения между электродами за счет подключения умножителя из диодов и конденсаторов.
Стационарная схема ЭПРА выцепляется из работы. Если она исправна, то ее можно использовать для подключения к другим колбам по принципу горячего запуска. Только следует обратить внимание на соответствие мощностей блока и источника света.
При холодном запуске целая нить накала будет подвергаться экстремальным нагрузкам. Сколько она прослужит дальше рассчитать сложно. Поэтому рекомендую сразу зашунтировать обе на всех концах стеклянной колбы.
Умножитель поднимает величину напряжения до киловольта. На такое значение в принципе рассчитана бытовая проводка. Для изоляции эта опасность не особо критична, а человек подвергается повышенным рискам травматизма от воздействия электрического тока.
Из личного опыта: по схеме холодного запуска лет десять назад восстановил работоспособность пары люминесцентных ламп. Они до сих пор светят.
Для запуска перегоревших энергосберегающих ламп по такой схеме необходимо учесть габариты получающегося умножителя напряжения.
Вполне вероятно, что он не поместится в корпусе цоколя даже при изъятом электронном балласте ЭПРА.
В этой ситуации придется делать для него внешний корпус и подключать лампу через дополнительные соединители.
Поэтому сразу прикидывайте габариты получающегося умножителя и место под него внутри цоколя колбы.
Ремонт ЭПРА: на что обращать внимание
Самый простой способ проверки исправности пускорегулирующей аппаратуры заключается в подключении ее на колбу с целыми нитями накала и подаче входного напряжения 220. Если лампа светится, то ЭПРА исправна. В противном случае необходимо искать неисправности.
Обычно хозяин покупает в магазине не одну, а несколько одинаковых ламп для организации освещения. Когда они выходят из строя, то их не стоит выбрасывать, а следует проверять причину поломки.
Довольно часто можно собрать одну исправную из двух поврежденных. Еще останутся запасные детали, которые тоже пойдут в дело со временем.
Принципы построения схем импульсных преобразователей и основные типы их конструкций я изложил отдельной статьей для начинающих мастеров. Рекомендую ознакомиться. Многие положения пригодятся при устранении возникающих неисправностей.
При ремонте аппаратуры ЭПРА необходимо соблюдать ту же последовательность действий, что и для ИБП.
Типовую схему электронной пускорегулирующей аппаратуры показываю на картинке ниже. У какой-то конструкции она может незначительно отличаться, но алгоритм действий для проверки элементов практически не меняется.
Предохранитель FU1 стоит в цепи подачи 220 вольт и работает совместно с резистором R1 (1÷30 Ом) на выпрямительный мост VD1÷VD4 (TN4005). Диод VD5 этой же марки, а VD6 и VD7 — 1N4148.
Марка динистора VS1 DB3. Он в лампах маленькой мощности может отсутствовать. Транзисторами чаще всего используют MJE 13003.
Номиналы емкостей: С1 и С3 — 0,1мкФ; С2— 1,5÷10 мкФ (400В); С4 — 0,033÷0,1 мкФ (400В);
С5 — 1800÷3900пФ (650 В).
Источник: https://ElectrikBlog.ru/energosberegayushhaya-lampa-remont-svoimi-rukami/
Ремонт энергосберегающей лампы своими руками: видео, схемы
Энергосберегающие лампы действительно потребляют значительно меньше электроэнергии, чем аналоги с нитью накала, но стоят они в несколько раз дороже последних. И, как показывает практика, выходят из строя чаще.
Вдвойне обидней, когда это происходит через два-три месяца после приобретения. В таких случаях не стоит их выбрасывать в мусорное ведро по двум причинам. Во-первых, в этих осветительных приборах содержится ртуть, поэтому они требуют утилизации.
Во-вторых, с большой долей вероятности лампу можно восстановить. Расскажем, как это можно сделать.
Особенности конструкции
Прежде, чем приступать к ремонту, необходимо понимать устройство осветительного прибора. Основные элементы конструкции представлены на рисунке 1.
Рис. 1. Устройство энергосберегающей лампы
Обозначения:
- А – Колба спиралевидной формы. По сути это запаянная трубка, внутри нее находится инертный газ (как правило, аргон) и пары ртути. С каждого ее края вплавлены два электрода, между которыми натянута нить накала. Внутренняя часть трубки покрыта люминофором.
- В – Верхняя часть корпуса, к которой крепится колба. Сразу предупреждаем, что вытащить колбу не нарушив целостность корпуса нереально, поэтому их лучше воспринимать как единую конструкцию.
- С – смонтированное на печатной плате пускорегулирующее устройство, его еще называют электронным балластом или просто балластом. Как вы понимаете, при его выходе из строя, осветительный прибор превращается в предмет утилизации. Схема балласта будет приведена в соответствующем разделе.
- D – Предохранитель, как правило, его роль играет низкоомное сопротивление.
- E – Нижняя часть корпуса, в него устанавливается балласт, крепление с верхней частью обеспечивается при помощи защелок.
- F – цоколь. В быту более распространены типы Е14 (миньон) и Е27. Нижняя часть корпуса с цоколем, также представляют собой единую, неразборную конструкцию. На внешней части корпуса нанесена маркировка осветительного прибора, где указаны его основные характеристики.
Основные этапы ремонта
Системный подход к любой задаче обеспечивает оптимальный способ ее решения, поэтому будем действовать по следующему алгоритму:
- Подготовка необходимых инструментов.
- Демонтаж конструкции.
- Поиск и устранение неисправностей.
- Сборка конструкции.
Теперь подробно о каждом этапе.
Необходимые инструменты
В процессе работы нам понадобятся:
- плоская отвертка;
- цифровой мультиметр;
- паяльник мощностью 25-30 Вт и все необходимое для пайки.
Демонтаж
Все действия делаем аккуратно, стараясь не повредить корпус, а тем более колбу лампы, в которой находятся пары ртути, представляющие опасность для человеческого организма.
Как уже было сказано выше, верхняя и нижняя части корпуса соединены между собой защелками. Чтобы их разъединить, необходимо вставить отвертку в щель (показано на рис 2) и слегка повернуть ее. Рекомендуем начинать с места, где нанесена маркировка, как правило, там находится одна из защелок.
Рис. 2. Паз между верхней и нижней частью корпуса
Освободив защелку, передвигаемся далее по пазу и продолжаем процедуру, пока верхняя и нижняя часть не отделятся друг от друга.
Части корпуса разъединились
Теперь нам необходимо отсоединить провода, соединяющие нить накала лампы и плату. Всего их четыре штуки. В большинстве конструкций провода не припаяны на плату, а намотаны на специальные штырьки.
Штырьки, к которым прикручены провода с колбы
После этого этапа можно переходит к поиску неисправностей.
Поиск неисправностей
Осветительный прибор может не работать из-за неисправности колбы (перегорела одна или обе нити накала) или вследствие выхода из строя пускорегулирующего устройства. Начнем проверку с колбы.
Для этой цели нам понадобится мультиметр. Переводим его в режим измерения низкоомного сопротивления и прозваниваем каждую пару выводов. Как правило, их сопротивление не превышает 15 Ом. Может иметь место незначительное расхождение в показаниях по каждой паре, но, это, скорее всего погрешность прибора.
Проведя измерения можно сформировать первоначальные выводы:
- Если обнаружен обрыв нити накала, то пускорегулирующее устройство с большой вероятностью работоспособное. Колба подлежит утилизации, а электронный балласт можно отложить до лучших времен, например, если потребуется произвести его замену на однотипном приборе освещения. Заметим, что при одной перегоревшей нити накала, лампу можно восстановить. Как это сделать будет рассказано в разделе, посвященном пускорегулирующему устройству.
- В том случае, когда с колбой все в порядке, моно констатировать выход из строя балласта. Как и большинство электронных устройств, он подлежит ремонту.
Ремонт балласта
В первую очередь необходимо произвести визуальный осмотр. В большинстве случаев с его помощью можно определить сгоревшие компоненты, например вздутые емкости, разрушенные корпуса транзисторов, следы подгорания и т.д. Заметим, что замена таких элементов может не дать результата, в этом случае потребуется проверка всей цепи.
Если проблемы не обнаружены, необходимо проверить основные элементы. Для этого желательно иметь схему пускорегулирующего устройства.
Схема балласта
Приведенная схема является типовой, она используется практически во всех балластах с небольшими изменениями.
Рисунок 5. Схема электронного балласта
Обозначения:
- Сопротивления: R1 – от 1 до 30 Ом (играет роль предохранителя); R2 и R3– от 220 кОм до 510 кОм; R4 и R5– от 1 до 2,7 Ом; R6 и R7– от 8,2 до 20 Ом.
- Емкости: С1 – 0,1 мкФ; С2 – от 1,5 мкФ до 10 мкФ 400В; С3 – 0,01 мкФ; С4 – от 0,033 мФ до 0,1 мкФ 400В; С5 – от 1800 пФ до 3900 пФ 650В.
- Диоды: VD1-VD5 – 1N4005; VD6 и VD7 – 1N4148.
- Динистор VS1 – DB3 (в осветительных приборах малой мощности может не использоваться).
- Транзисторы: VT1, VT2 – 13003 (вполне возможны другие аналоги).
Катушка L1 совместно с емкостью С1 играет роль фильтра помех, во многих недорогих китайских приборах вместо нее запаяна перемычка.
Катушка L2 может иметь от 250 до 350 витков, которые намотаны проводом Ø 0,2 мм на ферритовый сердечник, имеющий Ш-образную форму. По внешнему виду напоминает небольшой трансформатор.
Трансформатор Т1 в каждой обмотке от 3 до 9 витков, как правило, используется провод Ø 0,3 мм. В качестве магнитопровода используется ферритовое кольцо.
Предохранитель: FU1 – 0.5 A. В большинстве изделий, произведенных в Китае он не устанавливается. В таких случаях роль предохранителя выполняет низкоомное сопротивление R1. Именно оно сгорает в первую очередь. Как правило, замена не дает результата, поскольку его выход из строя является следствием неисправности, а не причиной.
Поиск неисправностей в балласте
Алгоритм действий будет следующим:
- Начинать нужно с замены предохранительного резистора, при проблемах с балластом, он практически всегда выгорает.
Предохранительный резистор отмечен красным
- После замены начинаем поиск неисправных компонентов. В приведенной схеме чаще всего из строя выходят емкости, именно с них необходимо начинать проверку. Для этого вооружаемся паяльником и выпаиваем конденсаторы С3-С5 (см. схему на рис. 5). После этого проверяем их при помощи мультиметра (как проверить различные электронные компоненты можно узнать на нашем сайте).
Обратим внимание, что в тех случаях, когда осветительный прибор вышел из строя, но наблюдется небольшое свечение колбы в области нитей накала, можно с уверенностью сказать — необходима замена емкости С5.
Как видно из схемы, она является частью колебательного контура, необходимого для формирования высоковольтного импульса, чтобы вызвать разряд.
При сгоревшей емкости, напряжения для разряда недостаточно, в результате лампа не может перейти в фазу рабочего режима, но на спирали подается питание. Это и проявляется в виде небольшого свечения.
- Если с емкостями все в порядке, следует протестировать диоды, входящие в состав моста. В данном случае тестирование можно произвести без выпаивания с платы. Если хоть один из них вышел из строя. Велика вероятность, что будет пробита емкость С2.
Электролитический конденсатор С2 отмечен красным
Соответственно, если при внешнем осмотре обнаружилось вздутие C2, велика вероятность выхода из строя одного или нескольких диодов моста.
- Если перечисленные деталями исправны, то следует проверить транзисторы. Их придется проблема выпаивать, поскольку обвязка не даст точно провести измерения. Как показывает практика, в ходе вышеописанных этапов тестирования неисправность будет обнаружена.
- Обнаружив неисправность, необходимо протестировать работу осветительного прибора, подав питание на цоколь. Делать это нужно аккуратно, поскольку на элементах платы присутствует высокое напряжение.
После того, как лампа зажглась, отключаем ее и приступаем к сборке. С ней проблем, как правило, не бывает.
Ремонт лампы с перегоревшей нитью накала
Необходимо сразу предупредить, что такой ремонт приведет к тому, что балласт будет работать в нештатном режиме. В результате перегрузки пускорегулирующее устройство выйдет из строя. Как правило, оно работает в таком режиме не более года, продолжительность зависит от задействованных в схеме элементов и их состояния.
Если сгорела только одна нить накала, ее необходимо зашунтировать сопротивлением, так как это продемонстрировано на рисунке.
Установка шунта на сгоревшую нить накала
В качестве шунтирующего сопротивления RШ теоретически необходимо устанавливать резистор с номиналом, соответствующим сопротивлению второй (целой) нити накала.
Но, как показывает практика, это не совсем верно, потому, что мы измеряем сопротивление «холодной» нити. В результате такого ремонта устройство выйдет из строя в течение 10-15 минут «спалив» при этом большую часть активных компонентов.
Поэтому мы советуем использовать резистор номиналом 22 Ома мощностью не менее 1 Ватта.
Источник: https://www.asutpp.ru/remont-energosberegayushhej-lampy-svoimi-rukami.html
Особенности схем энергосберегающих ламп
Современные производители предлагают энергоэффективные лампы разных размеров, мощностей, оснащенных различными цоколями. Также осветительные приборы имеют разное строение, от чего отличаются их схемы. В зависимости от компании-производителя, можно выбрать изделия с более сложными механизмами, которые будут иметь качественные элементы электронного пускорегулирующего аппарата (ЭПРА).
Особенности схем
- Navigator (отечественный производитель);
- MAXUS (международная британско-английская корпорация);
- DeLux (китайский производитель);
- Camelion (зонтичный бренд, зарожденный в Гонконге и удачно интегрированный в наши дни в Европе, Азии и Америке).
Схема энергосберегающей лампы – это ее, так называемое, сердце, при помощи которого функционирует весь осветительный прибор. В состав электронной платы могут входить детали различного качества и величины, в зависимости от добросовестности производителя. Стоит отметить, что приборы высокой мощности, эквивалентные лампам накаливания на 105 и выше ватт, не могут иметь мелких элементов, так как для обеспечения нормальной работы электросхема должна быть оснащена массивными деталями.
Если сравнивать лампочки «Максус» и «Навигатор», можно убедиться, что их комплектующие будут разными. Это значит, что компании сотрудничают с различными производителями электродеталей или используют разные подходы к самостоятельному созданию этих элементов.
В целом же, все схемы ламп на 20, 30, 60 W и выше будут очень похожими между собой, что помогает производить их ремонт, если какие-то механизмы выходят из строя.
Принцип действия экономки
Однако человек не может воспринимать ни ультрафиолетовое, ни инфракрасное излучение. Для его преобразования в видимый для наших глаз свет используется специальное покрытие – люминофор. Проходя через него, лучи ультрафиолета превращаются в равномерное, яркое, насыщенное освещение.
Благодаря невысокой мощности, экономка на 20 Вт имеет больший КПД, чем лампа накаливания на 100 Вт. Рассмотрим, из-за чего лампочки помогают сберегать электроэнергию, и как они устроены.
Составляющие схемы
Энергосберегающий осветительный прибор состоит из самой лампы и электронного балласта, который еще называют электросхемой. Все элементы электроники созданы для того, чтобы обеспечивать бесперебойную и корректную работу лампы.
Самая большая отличительная особенность данных устройств от обычных ламп накаливания заключается в том, что они работают от постоянного напряжения, а не переменного, который выдает сеть.
Именно по этой причине ЭПРА вмонтирован в сам корпус лампочек, он используется для предобразования, распределения и защиты механизма. Схема включения содержит такие компоненты:
- высоковольтные маломощные диоды;
- помехозащитный дроссель;
- транзисторы средней мощности;
- электролит высоковольтный (чаще всего на 400 В);
- конденсаторы различной емкости, но одного вольтажа (250 В);
- высокочастотные трансформаторы (2 штуки);
- резисторы.
Как происходит зажигание лампы
Когда напряжение попадает на динистор, образовывается импульс, который идет на транзистор и провоцирует его открытие. После того как запуск завершен, эта часть цепи блокируется диодом.
После открытия транзистора конденсатор разряжается, что необходимо для предупреждения повторного открытия динистора. Транзисторы воздействуют на трансформатор. Он выполнен из ферритового колечка, обработанного тремя обмотками, расположенными в несколько рядов.
Напряжение на нити дается через конденсатор с повышающего резонансного контура.
После полной ионизации газа в колбе конденсатор с самой большей емкостью, который определял частоту свечения, шунтируется. Это приводит к понижению частоты и переходу управления генератором ко второму конденсатору. Генерируемое напряжение снижается, но остается в пределах такого, которое необходимо для поддержания горения лампочки.
Принципиальный момент заключается в том, что катод и анод поочередно меняются своими местами, это помогает обеспечить бесперебойность работы схемы и значительно упрощает ремонт, если его нужно сделать.
Устройство лампы
Кроме ЭПРА, вмонтированного в цоколь, важным элементом энергосберегающего осветительного прибора является лампа. Именно она отвечает за равномерность распределения света, его насыщенность, цветопередачу и другие свойства устройства.
Условно разделить отделы колбы можно на нижний и верхний. В верхнем проделываются специальные отверстия, предназначенные для установки трубки. Нижняя часть содержит плату, в которой расположены детали, и от которой отходят выводы от трубки.
Верхняя область платы оснащена проводами, которые идут к цоколю. Крепиться друг к другу элементы лампы могут при помощи специальных защелок. В более дешевых моделях части склеивают. Если нужно сделать ремонт, по линии стыка надо провести отверткой или разъединить защелки.
Как производится ремонт
Если в лампах на 30 Вт и более перегорает резистор, большая вероятность того, что транзисторы также вышли из строя. Это происходит из-за пробоя конденсатора. Исправить ситуацию можно путем установки нового предохранителя (резистора) и транзисторов.
Кроме замены испорченных элементов схемы, можно произвести модернизацию лампы. Это делается путем просверливания в цоколе вентиляционных отверстий. В некоторых моделях они уже есть, а если производители не позаботились о надлежащем охлаждении элементов электроники, можно сделать это самостоятельно.
Внимание! Если вы просверлили в цоколе лампы на 30 W или осветительном приборе другой мощности вентиляционные отверстия, его нельзя использовать в помещениях с повышенной влажностью. Это может привести к пробою в конденсаторе и выходу лампы из строя.
Целесообразность вмешательства в схемы
Производить ремонт ламп на 30 W или энергосберегающих приборов другой мощности можно только в том случае, если вы уверенны в своих силах и знаниях. Когда же вы не понимаете, как устроена схема лампы, и что в ней может сломаться, лучше всего не пытайтесь самостоятельно устранить поломку.
Запрещено производить какие-либо действия с экономками, если нарушена целостность их колб. В трубке содержится ртуть или ее пары, потому при ее разгерметизации прибор становится опасным для здоровья и жизни человека.
Подытожим
Схемы энергосберегающих ламп практически одинаковы во всех моделях. Различия могут быть в наличии диодов, шунтирующих спиралей и других элементов. Однако если вы знаете устройство электроники одного прибора, то работать со всеми остальными будет довольно просто.
Схемами интересуются зачастую люди, которые хотят самостоятельно починить вышедшие из строя осветительные приборы. Делать это несложно, если вы имеете необходимые навыки и уверены, что экономку можно привести в рабочее состояние.
Читайте далее
Оставьте комментарий и вступите в дискуссию
Источник: https://hitropop.com/energosberezhenie/svet/skhema-ehnergosberegayushchej-lampy.html
Схема и устройство энергосберегающей лампы
Обозначение «энергосберегающая лампа» (ЭЛ) больше касается люминесцентных компактных ламп с резьбовым цоколем любой мощности (7, 20 Вт и выше). Благодаря более компактным размерам, стандартному цоколю Эдисона в конструкции и отсутствию необходимости использовать вынесенный пускорегулирующий аппарат, такие лампочки более популярны, чем линейные конструкции того же типа.
Нюансы работы и устройства
Компактная люминесцентная лампа состоит из нескольких основных узлов: встроенный электронный балласт, колба с газообразным наполнением, цоколь.
Принцип функционирования ЭЛ основывается на явлении под названием люминесценция. Внутренняя поверхность колбы покрыта люминофором.
Это вещество может иметь разный состав, от чего будет зависеть качество освещения и соответственно целевое назначение источника света.
Устройство такой лампы предполагает наличие двух электродов, которые установлены в трубке. Под напряжением между ними возникает дуговой разряд. В колбе содержится ртуть в небольшой концентрации и инертный газ.
Благодаря такому содержимому образуется низкотемпературная плазма, которая в дальнейшем преобразуется в УФ-излучение, невидимое для глаз человека. На данном этапе главную роль играет люминофор, которым колба покрыта изнутри. Это вещество поглощает ультрафиолетовое излучение, в результате лампа выдает видимый свет.
Схема энергосберегающей лампы на 11 Вт выглядит следующим образом:
На рисунке можно увидеть питающие цепи, приводящие в работу дроссель L2, предохранитель F1, фильтрующий конденсатор C4 и диодный мост (4 диода 1N4007). В запуске участвуют динистор и элементы D1, С2, R6. Защитные функции реализуются посредством элементов R1, R3, D2, D3.
Для включения лампы необходимо обеспечить открытие транзистора Q2, что происходит при помощи R6, C2, а также динистора: эти элементы формируют импульс. Блокировка данного участка схемы выполняется с участием диода D1. Возбуждение трансформатора обеспечивается посредством транзисторов. Напряжение поступает с повышающего резонансного контура (L1, С3, С6, TR1).
Виды энергосберегающих ламп
Выбор источника света делается на основании отличий в форме, типе держателя, мощности. Играет роль и марка изделия. Наиболее популярные производители: Navigator, Philips, General Electric, Osram.
Устройство ЭЛ может быть разным, что определяется типом цоколя:
- Е14, Е27, Е40 – цоколь Эдисона, благодаря чему источник света данного вида может устанавливаться вместо аналогов с нитью накаливания;
- штырьковые держатели (G53, 2 D, G23, G24Q1-G24Q3).
По цветовой температуре различают следующие исполнения ЭЛ:
- с теплым белым свечением (2 700 К);
- с холодным светом (6 400 К);
- источник дневного света (4 200 К).
Встречаются и разные колбы: U-образные, спиралевидные, шарообразные и грушевидные. Отличаются энергосберегающие лампочки еще и диаметром трубки: 7, 9, 12, 17 мм.
Обзор технических характеристик
При выборе следует учитывать все основные параметры источников света:
- Мощность (от 7 до 105 Вт). Для дома рекомендуется выбирать исполнения не более 20 Вт. Дело в том, что световой поток ЭЛ напрямую зависит от мощности: чем больше значение данного параметра, тем ярче свет. Для сравнения, лампа накаливания 100 Вт и люминесцентный компактный аналог 20 Вт выдают световой поток одинаковой силы.
- Тип цоколя. Подбирается, исходя из особенностей осветительного прибора, в который будет установлена лампа.
- Форма колбы. На качество работы этот параметр не влияет.
- Цветовая температура. Если источник света был выбран неправильно, такой свет будет вызвать дискомфорт вне зависимости от мощности (7, 20 Вт и выше) и других параметров.
Кроме того, при выборе ЭЛ необходимо обращать внимание на срок службы. В среднем лампа данного вида работает на протяжении 6 000-12 000 часов.
Плюсы и минусы эксплуатации
Популярность таких источников света обусловлена немалым количеством преимуществ:
- снижение уровня энергопотребления (на 80%), соответственно, лампа мощностью 20 Вт работает не менее эффективно, чем аналог с нитью накаливания 100 Вт;
- более длительный срок работы;
- невысокая интенсивность нагрева;
- равномерный свет;
- широкий выбор исполнений, отличных по цветовой температуре.
К минусам можно отнести сравнительно высокую стоимость, наличие в колбе опасных для здоровья веществ, снижение эффективности в условиях низких температур, негативное воздействие на механизм частых коммутационных операций.
Кроме того, электрическая схема такого источника света не предусматривает использование диммера.
Таким образом, энергосберегающие лампочки во многом превосходят прочие аналоги (галогенные и лампы накаливания). В первую очередь это обусловлено снижением расходов на электричество, так как источник света на 20 Вт сможет заменить вариант с нитью накаливания, рассчитанный на 100 Вт.
Еще люминесцентные компактные лампочки выделяют меньше тепловой энергии, отличаются надежностью и компактными размерами. Форма колбы не влияет на эффективность работы, разве что отличается стоимость: спиралевидные исполнения предлагаются по более высокой цене.
(2
Источник: http://ProOsveschenie.ru/dlya-doma-i-kvartir/skhema-ehnergosberegayushhejj-lampy.html