Tl494 схема включения, datasheet

TL494

TL494 – замечательная, универсальная микросхема, созданная достаточно давно, до сих пор не потеряла своей актуальности. (источник wyst.at.ua)

Только самое главное.

Напряжение питания 8-35в (вроде можно до 40в, но не испытывал) Возможность работать в однотактном  и двухтактном режиме. Для однотактного  режима максимальная длительность импульса составляет 96% (не меньше 4% мертвого времени). Для двухтактного варианта – длительность мертвого времени не может быть меньше 4%.

Подавая на вывод 4 напряжение 0…3,3в можно регулировать мертвое время. И осуществлять плавный запуск. Имеется встроенный стабилизированный источник опорного напряжения 5в и током до 10ма. Имеется встроенная защита от пониженного напряжения питания, выключаясь ниже 5,5…7в (чаще всего 6,4в).

Беда в том, что при таком напряжении мосфеты уже переходят в линейный режим и сгорают… Имеется возможность выключит генератор микросхемы замкнув ключом вывод Rt (6) вывод опорного напряжения (14) или  вывод Ct (5) на землю. Рабочая частота 1…300кГц. Два встроенных операционных усилителя «ошибки» с коэффициентом усиления Ку=70..95Дб.

Входы – выводы (1); (2) и (15); (16). Выходы усилителей объединены элементом ИЛИ, поэтому тот на выходе которого напряжение больше и управляет длительностью импульса. Один из входов компаратора обычно привязывают к опорному напряжению (14), а второй – куда нада…Задержка сигнала внутри Усилителя 400нс, они не предназначены для работы в пределах одного такта.

Обратите внимание

Выходные каскады микросхемы при среднем токе в 200ма, достаточно быстро заряжают входную емкость затвора  мощного мосфета, но не обеспечивают ее разряд. за приемлемое время. В связи с чем обязательно необходим внешний драйвер. Вывод (5) кондесатор С2 и вывод (6) резисторы R3; R4 – задают частоту внутреннего генератора микросхемы.

В двухтактном режиме она делиться на 2. Есть возможность синхронизации, запуск входными импульсами.

Однотактный  генератор с регулировкой частоты и скважности

Однотактный  генератор с регулировкой частоты и скважности (отношение длительности импульса к длительности паузы).  С одно транзисторным выходным драйвером. Такой режим реализуется, если соединить вывод 13 с общей шиной питания.

Схема (1)

Поскольку микросхема имеет два выходных каскада, которые в данном случае работают синфазно, их для увеличения выходного тока можно включить параллельно… Или не включать…(зеленым цветом на схеме) Так же не всегда ставиться и резистор R7.

Измеряя операционным усилителем напряжение на резисторе R10, можно ограничить выходной ток. На второй вход подается опорное напряжение делителем R5;  R6. Ну понимаете R10 будет греться. Цепь С6; R11, на (3) ногу, ставят для большей устойчивости, даташит просит, но работает и без нее.

  Транзистор можно взять и npn структуры.

Схема (2)

Схема (3)

Однотактный генератор с регулировкой частоты и скважности. С двух транзисторным выходным драйвером (комплементарный повторитель).

Что могу сказать? Форма сигнала лучше, сокращаются переходные процессы в моменты переключения, выше нагрузочная способность, меньше тепловые потери. Хотя может быть это субъективное мнение. Но. Сейчас я использую только двух транзисторный драйвер. Да, резистор в цепи затвора ограничивает скорость переходных процессов при переключении.

Схема (4)

А здесь имеем схему типичного повышающего (boost) регулируемого однотактного преобразователя, с регулировкой напряжения и ограничением тока. Схема рабочая, собиралась мной в нескольких вариантах. Выходное напряжение зависит от количества витков катушки L1, ну и от сопротивления резисторов R7; R10; R11, которые при налаживании подбираются…

Саму катушку можно мотать на чем угодно. Размер – в зависимости от мощности. Кольцо, Ш-сердечник, даже просто на стержне. Но она не должна входить в насыщение. Поэтому если кольцо из феррита, то нужно разрезать и склеить с зазором. Хорошо пойдут большие кольца из компьютерных блоков питания, их резать не надо, они из “рапыленного железа” зазор уже предусмотрен.

Важно

Если сердечник Ш-образный – ставим не магнитный зазор, бывают с коротким средним керном – эти уже с зазором. Короче, мотаем толстым медным или монтажным проводом (0,5-1,0мм в зависимости от мощности) и числом витков 10-и больше (в зависимости, какое напряжение желаем получить). Подключаем нагрузку на планируемое напряжение небольшой мощности.

Подключаем наше творение к аккумулятору через мощную лампу. Если лампа не загорелась в полный накал – берем вольтметр и осцилограф… Подбираем резисторы R7; R10; R11 и число витков катушки L1, добиваясь задуманного напряжения на нагрузке. Дроссель Др1 – 5…10 витков толстым проводом на любом сердечнике.

Видел даже варианты, где L1 и Др1 намотаны на одном сердечнике. Сам не проверял.

Схема (5)

Это тоже реальная схема повышающего преобразователя, который можно использовать, например для зарядки ноутбука от автомобильного аккумулятора. Компаратор по входам (15);(16) следит за напряжением аккумулятора “донора” и отключит преобразователь, когда напряжение на нем упадет ниже выбранного порога.

Цепь С8; R12; VD2 – так называемый Снаббер, предназначен для подавления индуктивных выбросов. Спасает низковольтный МОСФЕТ, например IRF3205 выдерживает, если не ошибаюсь, (сток – исток) до 50в. Однако здорово уменьшает КПД. И диод и резистор прилично греются. За то увеличивается надежность. В некоторых режимах (схемах) без него просто сразу сгорает мощный транзистор.

А бывает работает и без всего этого…Надо смотреть осциллограф…

Схема (6)

Двухтактный задающий генератор. Различные варианты исполнения и регулировок. На первый взгляд огромное разнообразие схем включения сводится к намного более скромному количеству действительно работающих… Первое, что я обычно делаю, когда вижу “хитрую” схему – перерисовываю в привычном для себя стандарте. Раньше это называлось – ГОСТ. Сейчас рисуют не понятно как, что крайне затрудняет восприятие. И скрывает ошибки. Думаю, что часто это делается специально. Задающий генератор для полумоста или моста. Это простейший генератор, Длительность импульсов и частота регулируется в ручную. Оптроном по (3) ноге тоже можно регулировать длительность, однако регулировка очень острая. Я использовал для прерывания работы микросхемы. Некоторые “корифеи” говорят, что управлять по (3) выводу нельзя, микросхема сгорит, но мой опыт подтверждает работоспособность данного решения. Кстати оно удачно использовалось в сварочном инверторе.

Схема (7)

А это полный мост на комплементарных транзисторах. На выход можно подключать самую разнообразную нагрузку. Правда с осторожностью, защит от перегрузок нет. Включать нужно при минимальной длительности импульса. Ограничение по напряжению питания накладывают низковольтные выходные транзисторы

Схема (8)

Тоже самое но с ограничением потребляемого тока и кое-какой стабилизацией выходного напряжения.

Схема (9)

Повышающий, на небольшой ток, со стабилизацией напряжения и ограничением тока по выходу. Сам не делал, но вроде должен работать.

Схема (10)

Примеры реализации регулировок (стабилизации) тока и напряжения. То, что на рисунке №12 делал сам, – понравилось. Синие конденсаторы наверное можно не устанавливать, но лучше пусть будут.

Схема (11)

Схема (12)

Источник: https://96kw.blogspot.com/2015/07/tl494.html

Микросхема TL494, она же KA7500B и КР1114ЕУ4

Микросхема TL494 представляет собой ШИМ – контроллер, отлично подходящий для построения импульсных блоков питания различной топологии и мощности. Может работать как в однотактном, так и в двухтактном режиме.

Отечественным ее аналогом является микросхема КР1114ЕУ4. Texas Instruments, International Rectifier, ON Semiconductor, Fairchild Semiconductor – многие производители выпускают данный ШИМ-контроллер. У Fairchild Semiconductor он называется, например, KA7500B.

Если просто посмотреть на обозначения выводов, становится ясно, что данная микросхема имеет довольно широкие возможности для регулировки.

Рассмотрим обозначения всех выводов:

  • неинвертирующий вход первого компаратора ошибки
  • инвертирующий вход первого компаратора ошибки
  • вход обратной связи
  • вход регулировки мертвого времени
  • вывод для подключения внешнего времязадающего конденсатора
  • вывод для подключения времязадающего резистора
  • общий вывод микросхемы, минус питания
  • вывод коллектора первого выходного транзистора
  • вывод эмиттера первого выходного транзистора
  • вывод эмиттера второго выходного транзистора
  • вывод коллектора второго выходного транзистора
  • вход подачи питающего напряжения
  • вход выбора однотактного или же двухтактного режима работы микросхемы
  • вывод встроенного источника опорного напряжения 5 вольт
  • инвертирующий вход второго компаратора ошибки
  • неинвертирующий вход второго компаратора ошибки
Читайте также:  Задние фонари ваз 2112: расположение ламп, установка светодиодов

На функциональной диаграмме можно видеть внутреннюю структуру микросхемы.
Два верхних вывода слева предназначены для настройки параметров внутреннего генератора пилообразного напряжения, который здесь обозначен как «Oscillator».

Для нормальной работы микросхемы, производитель рекомендует применять времязадающий конденсатор емкостью из диапазона от 470пф до 10мкф, а времязадающий резистор из диапазона от 1,8кОм до 500кОм. Рекомендуемый диапазон рабочих частот – от 1кГц до 300кГц. Частоту можно вычислить по формуле f = 1.1/RC.

Так, в рабочем режиме на выводе 5 будет присутствовать пилообразное напряжение амплитудой около 3 вольт. У разных производителей она может отличаться в зависимости от параметров внутренних цепей микросхемы.

Совет

Для примера, если применить конденсатор емкостью 1нФ, а резистор на 10кОм, то частота пилообразного напряжения на выходе 5 составит примерно f = 1.1/(10000*0.000000001) = 110000Гц. Частота может отличаться, по данным производителя, на +-3% в зависимости от температурного режима компонентов.

Вход регулировки мертвого времени 4 предназначен для определения паузы между импульсами. Компаратор мертвого времени, обозначенный на схеме «Dead-time Control Comparator», даст разрешение выходным импульсам, если напряжение пилы выше напряжения, подаваемого на вход 4.

Так, подавая на вход 4 напряжение от 0 до 3 вольт, можно регулировать скважность выходных импульсов, при этом максимальная длительность рабочего цикла может составлять 96% в однотактном режиме и 48%, соответственно, в двухтактном режиме работы микросхемы. Минимальная пауза здесь ограничена значением 3%, которое обеспечивается встроенным источником с напряжением 0.1 вольта.

Вывод 3 также имеет значение, и напряжение на нем так же играет роль для разрешения импульсов на выходе.

Выводы 1 и 2, а так же выводы 15 и 16 компараторов ошибки могут быть использованы для защиты проектируемого устройства от перегрузок по току и по напряжению.

Если напряжение, подаваемое на вывод 1, станет выше, чем подаваемое на вывод 2, или напряжение, подаваемое на вывод 16, станет выше, чем напряжение, подаваемое на вывод 15, то вход ШИМ-компаратора «PWM Comparator» (вывод 3) получит сигнал для запрета импульсов на выходе.

Если данные компараторы использовать не планируется, то их можно заблокировать, замкнув на землю неинвертирущие входы, а инвертирующие подключив к источнику опорного напряжения (вывод 14). Вывод 14 является выходом встроенного в микросхему стабилизированного источника опорного напряжения 5 вольт.

К этому выводу можно подключать цепи, потребляющие ток до 10 мА, которыми могут быть делители напряжения для настройки цепей защиты, мягкого пуска, или установки фиксированной или регулируемой длительности импульсов. К выводу 12 подается напряжение питания микросхемы от 7 до 40 вольт. Как правило, применяют 12 вольт стабилизированного напряжения. Важно исключить любые помехи в цепи питания.

Вывод 13 отвечает за режим работы микросхемы.

Если на него подать опорное напряжение 5 вольт, (с вывода 14) то микросхема будет работать в двухтактном режиме, и выходные транзисторы будут открываться в противофазе, по очереди, причем частота включения каждого из выходных транзисторов будет равна половине частоты пилообразного напряжения на выводе 5. Но если замкнуть вывод 13 на минус питания, то выходные транзисторы станут работать параллельно, а частота будет равна частоте пилы на выводе 5, то есть частоте генератора.

Максимальный ток для каждого из выходных транзисторов микросхемы (выводы 8,9,10,11) составляет 250мА, однако производитель не рекомендует превышать 200мА. Соответственно, при параллельной работе выходных транзисторов (вывод 9 соединен с выводом 10, а вывод 8 соединен с выводом 11) максимально допустимый для ток составит 500мА, но лучше не превышать 400мА.

Обратите внимание

Выходные транзисторы могут быть включены по-разному, в соответствии с целью разработчика, по схеме с общим эмиттером, либо по схеме эмиттерного повторителя.

Лучшее сочетание вакуумных и          полупроводниковых характеристик – однотактный гибридный усилитель звука.

          Мы не создаём иллюзий,
          Мы делаем звук живым!

Источник: http://grimmi.ru/shim_tl494.html

TL494 схема

  • Полный набор функций ШИМ-управления
  • Выходной втекающий или вытекающий ток каждого выхода 200мА
  • Возможна работа в двухтактном или однотактном режиме
  • Встроенная схема подавления сдвоенных импульсов
  • Широкий диапазон регулировки
  • Выходное опорное напряжение 5В +-05%
  • Просто организуемая синхронизация

Отечественный аналог: 1114ЕУ3/4.

Специально созданные для построения источников вторичного питания (ИВП), микросхемы TL493/4/5 обеспечивают разработчику расширенные возможности при конструировании схем управления ИВП.

Приборы TL493/4/5 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5В и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) В.

Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.

Допускается синхронизация встроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С, что используется при синхронной работе нескольких схем ИВП.

Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя.

Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме.

Приборы, имеющие суффикс L, гарантируют нормальную работу в диапазоне температур –5…85С, с суффиксом С гарантируют нормальную работу в диапазоне температур 0…70С.

Структурная схема TL494

Расположение выводов

Предельные значения параметров

Напряжение питания 41В

Входное напряжение усилителя (Vcc+0.3)В

Выходное напряжение коллектора 41В

Выходной ток коллектора 250мА

Общая мощность рассеивания в непрерывном режиме 1Вт

Рабочий диапазон температур окружающей среды:

-c суффиксом L -25..85С

-с суффиксом С ..0..70С

Диапазон температур хранения -65…+150С

Описание работы

Микросхема TL494 представляет собой ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов R и С. Частота генератора определяется по формуле: osc=1.1/R*C

Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами (см. временную диаграмму).

Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии.

Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов.

Совет
Важно

Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3).

[/su_box]

Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразного напряжения. В результате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение.

Увеличить длительность мертвого времени на выходе, можно подав на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В. ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого потенциалом на входе регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В.

Оба усилителя ошибки имеют входной диапазон синфазного сигнала от –0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и объединены функцией ИЛИ на не инвертирующем входе ШИМ-компаратора.

Читайте также:  7 причин, почему не надо покупать светодиодные лампы в китае

В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2.

Важно

Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота при этом равна половине частоты генератора.

Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%. Этот режим рекомендуется использовать, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов.

Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно. Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора.

Микросхема TL494 имеет встроенный источник опорного напряжения на 5В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение допускает погрешность 5% в диапазоне рабочих температур от 0 до 70С.

Временная диаграмма TL949

Источник: https://hard-wired.ru/microchips/12-digital/45435-tl494.html

Зарядка из блока АТХ на TL494 и TPS3510 – ISO-450PP

При переделке в зарядное устройство АТХ блока на основе ШИМ TL494, можно столкнуться со схемами, у которых для контроля выходных напряжений используется отдельный супервизор TPS3510; WT7510 или др. Сегодня мы покажем пример того, как отключать подобный супервизор, что бы он никак не влиял на работу ШИМ. И так, зарядка из блока АТХ CWT ATX-300 (ISO-450PP), поехали!

Зарядка из блока АТХ на TL494 и TPS3510

Микросхемы на подобии TPS3510; WT7510 отслеживают напряжение сразу на нескольких шинах блока, в случае отклонения напряжения хоть на одной из них этот супервизор останавливает работу блока.

При изготовлении самодельного зарядного устройства на основе такого компьютерного блока питания основная переделка заключается в поднятии напряжения по шине +12 до 14В.

Если не отключать супервизор – блок будет работать крайне нестабильно, будут наблюдаться сбои в работе при нагрузке или проблемы со стартом.

Типовые схемы блоков  на основе TL494 и TPS3510; WT7510. На схемах уже обозначены некоторые важные элементы, о них речь пойдет ниже.

Отключение супервизора и организация автостарта блока

В зарядное устройство будем переделывать блок CWT ATX-300.

На плате находятся TL494 и TPS3510.

Удаляем диод D15, он выделенный на схеме красной рамкой. Если в блоке используется другая нумерация деталей или другая схема, ищем диод, который соединяет 4-ю ножку Tl494 (DTC) и 3-ю ножку TPS3510 (FPO).

После удаления диода, блок будет запускаться автоматически при включении в сеть, а TPS3510 уже не будет влиять на работу БП.

Как поднять напряжение в блоке питания компьютера?

Оптимальным для зарядки автомобильного АКБ считается напряжение 14-14,5В. Для поднятия напряжения нужно установить подстроечный резистор вместо резистора, соединяющего 1-ю ножку TL494 с шиной +12В.

На схеме он выделенный зеленой рамкой. Подстроечный резистор можно брать на 100-200кОм (желательно многооборотный).

Перед установкой его на плату его нужно настроить на такое же сопротивление, какое было у резистора, вместо которого его ставим.

После удачного старта корректируем выходное напряжение с помощью подстроечника.

При желании можно дополнительно изготовить защиту от переполюсовки и зарядка из блока АТХ готова!

Источник: http://diodnik.com/en/zaryadka-iz-bloka-atx-na-tl494-i-tps3510/

Описание ШИМ-контроллера TL494

Особенности:

  • Полный набор функций ШИМ-управления
  • Выходной втекающий или вытекающий ток каждого выхода …..200мА
  • Возможна работа в двухтактном или однотактном режиме
  • Встроенная схема подавления сдвоенных импульсов
  • Широкий диапазон регулировки
  • Выходное опорное напряжение…………………………………….5В +-05%
  • Просто организуемая синхронизацияОбщее описание:1114ЕУ3/4 – TL494Специально созданные для построение ИВП, микросхемы TL493/4/5 обеспечивают разработчику расширенные возможности при конструировании схем управления ИВП. Приборы TL493/4/5 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5В и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) В. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.Допускается синхронизация вcтроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С, что используется при синхронной работе нескольких схем ИВП.
  • Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме.Приборы, имеющие суффикс L, гарантируют нормальную работу в диапазоне температур -–5…85С, с суффиксом С гарантируют нормальную работу в диапазоне температур 0…70С.Структурная схема:

Предельные значения параметров:

Напряжение питания…………………………………………………………….41В

Входное напряжение усилителя…………………………………………(Vcc+0.3)В

Выходное напряжение коллектора………………………………………………41В

Выходной ток коллектора………………………………………………….…250мА

Общая мощность рассеивания в непрерывном режиме……………………….1Вт

Рабочий диапазон температур окружающей среды:

-c суффиксом L………………………………………………………………-25..85С

-с суффиксом С………………………………………………………………..0..70С

Диапазон температур хранения ………………………………………..-65…+150С

Функциональное описание:

Микросхема TL494 представляет из себя ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установке частоты только двух внешних компонентов R и С. Частота генератора определяется по формуле:

Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами (см временную диаграмму ).

Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии.

Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов.

Совет
Важно

Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3).

[/su_box]

Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразно напряжения. В результате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение.

Увеличит длительность мертвого времени на выходе, можно подавая на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В.

ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого входом регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В.

Оба усилителя ошибки имеют входной диапазон синфазного сигнала от –0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и обьеденины функцией ИЛИ не неинвертирующем входе ШИМ-компаратора.

В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2.

Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота равна половине частоты генератора.

Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%.

Читайте также:  Эра - производители светодиодных ламп

Это желательно, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов. Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно.

Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора.

Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 5% в диапазоне рабочих температур от 0 до 70С.

Микросхемы для импульсных источников питания и их применение. СПРАВОЧНИК.Издательство Додэка.

1997

Обсудить на форумеЕсли раньше элементная база системных блоков питания не вызывала ни каких вопросов – в них использовались стандартные микросхемы, то сегодня мы сталкиваемся с ситуацией, когда отдельные разработчики блоков питания начинают выпускать собственную До недавнего времени подавляющее большинство компьютерных ИП, в особенности производства многочисленных китайских фирм, выполнялось на основе микросхемы ШИМ-контроллера TL494 фирмы TEXAS INSTRUMENTS, или ее аналогов других фирм-производителей Трехфазный магнитный усилитель УМ3П-1,6-127-50Д применяется для изменения величины и направления токов в независимой обмотке возбуждения генератора на экскаваторе. Продолжаем рассказывать о микросхемах контроллеров, управляющих лампами CCFL в блоке задней подсветки LCD-мониторов. Сегодня в поле нашего зрения попала микросхема FAN7314, которая получила достаточно широкое применение в инверторах задней Активно развивающейся светодиодная отрасль, не могла не повлиять и на отрасль LCD дисплеев, сейчас уже не имеет значения, это экран телефона, планшета, ноутбука, монитора или телевизора. Светодиодная или иначе говоря LED подсветка матриц практически

Источник: https://ingeneryi.info/bytovaya-elektronika/stabilizatory-istochniki-pitaniya-bytovaya-elektro/58-opisanie-shim-kontrollera-tl494.html

Шим – контроллер. tl494

Полный набор функций ШИМ-управления Выходной втекающий или вытекающий ток каждого выхода …..200мА Возможна работа в двухтактном или однотактном режиме Встроенная схема подавления сдвоенных импульсов Широкий диапазон регулировки Выходное опорное напряжение……5В +-05%

Просто организуемая синхронизация

Особенности:

  • Полный набор функций ШИМ-управления
  • Выходной втекающий или вытекающий ток каждого выхода …..200мА
  • Возможна работа в двухтактном или однотактном режиме
  • Встроенная схема подавления сдвоенных импульсов
  • Широкий диапазон регулировки
  • Выходное опорное напряжение…………………………………….5В +-05%
  • Просто организуемая синхронизация

Общее описание:

1114ЕУ3/4 – TL494

Специально созданные для построения ИБП, микросхемы TL493/4/5 обеспечивают разработчику расширенные возможности при конструировании схем управления ИБП.

Приборы TL493/4/5 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5В и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) В.

Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.

Обратите внимание

Допускается синхронизация вcтроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С, что используется при синхронной работе нескольких схем ИБП.

Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя.

Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа.

Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме.

Приборы, имеющие суффикс L, гарантируют нормальную работу в диапазоне температур -–5…85С, с суффиксом С гарантируют нормальную работу в диапазоне температур 0…70С. 

Структурная схема:

Цоколевка корпуса:

Предельные значения параметров:

Напряжение питания…………………………………………………………….41В

Входное напряжение усилителя…………………………………………(Vcc+0.3)В

Выходное напряжение коллектора………………………………………………41В

Выходной ток коллектора………………………………………………….…250мА

Общая мощность рассеивания в непрерывном режиме……………………….1Вт

Рабочий диапазон температур окружающей среды:

-c суффиксом L………………………………………………………………-25..85С

-с суффиксом С………………………………………………………………..0..70С

Диапазон температур хранения ………………………………………..-65…+150С

Функциональное описание:

Микросхема TL494 представляет из себя ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов R и С. Частота генератора определяется по формуле:

Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С, с двумя управляющими сигналами (см. временную диаграмму ).

Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии.

Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов.

Совет
Важно

Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3).

[/su_box]

Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразного напряжения. В результате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение.

Увеличит длительность мертвого времени на выходе, можно подавая на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В. ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого входом регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В.

Оба усилителя ошибки имеют входной диапазон синфазного сигнала от –0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и объеденины функцией ИЛИ на неинвертирующем входе ШИМ-компаратора.

В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2.

Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота равна половине частоты генератора.

Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%. Это желательно, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов.

Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно. Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора.

Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 5% в диапазоне рабочих температур от 0 до 70С.

СПРАВОЧНИК.Издательство Додэка.1997

Источник: http://shemu.ru/istocniki/impulsnye/394-tl494

Ссылка на основную публикацию
Adblock
detector