Стабилизатор тока для светодиодов, схемы

Схемы стабилизаторов тока для светодиодов на транзисторах и микросхемах

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Но пульсации — это не страшно, гораздо хуже то, что малейшее повышение питающего напряжения может привести к настолько сильному увеличению тока через светодиоды, что они просто выгорят.

Чтобы этого не допустить, светодиоды (особенно мощные) обычно запитывают через специальные схемы — драйверы, которые по сути своей являются стабилизаторами тока. В этой статье будут рассмотрены схемы простых стабилизаторов тока для светодиодов (на транзисторах или распространенных микросхемах).

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе.

Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер).

Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Обратите внимание

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания — 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:

Важно

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать ~23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Достоинства схемы — ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):

Ток через светодиоды задается подбором резистора R1. VT1 — любой маломощный. Светодиоды — Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят!!!

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А — тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см2.

Совет

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал «земли».

Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси.

Это хорошо видно из графика выходной характеристики:

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Пример самого простого драйвера тока для светодиода представлен ниже:

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Стабилизаторы тока на микросхемах

Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).

TL431

Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:

Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что IRн = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.

R1 рассчитывается таким образом, чтобы обеспечить минимальный рабочий ток микросхемы — 1 мА.

А вот пример практического применения TL431 в светодиодной лампе:

На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.

Обратите внимание

Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.

В качестве нагрузки Rн здесь выступают 90 белых чип-светодиодов 2835. Максимальная мощность при токе 60 мА составляет 0.2 Вт (24Lm), падение напряжения — 3.2 В. Также можно применить любые другие подходящие светодиоды, например, SMD5050.

Для увеличение срока службы мощность диодов специально занижена на 20% (0.16 Вт, ток 45 мА), соответственно, суммарная мощность всех светодиодов составляет — 14 Вт.

Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.

Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:

Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.

С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.

Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.

Важно

Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED < (358 - 6) / 3.

2, причем, чем их больше, тем выше яркость светильника и тем меньшая мощность будет уходить в никуда (рассеиваться в виде тепла на транзисторе VT1).

Максимальное напряжение Uкэ транзистора VT1 должно быть не ниже 358 — (ULED * NLED).

LM7805, LM7812..

Любой интегральный стабилизатор напряжения можно превратить в стабилизатор тока, добавив всего один резистор в соответствии со схемой:

Только надо учитывать, что, при таком включении, входное напряжение должно быть больше, чем напряжение стабилизации микросхемы на некоторую величину (падение напряжение на самом стабилизаторе). Обычно это где-то 2-2.5 вольта. Ну и, само собой, добавить напряжение на нагрузке.

Вот, например, конкретный пример стабилизатора тока для светодиодов на ЛМ7812:

Потребляемый ток (как и ток через светодиоды) — 300 мА. Мощность светильника ~10 Ватт.

Все параметры схемы рассчитаны на 10 светодиодов SMD 5730-1 с прямым напряжением 3.3 вольта на каждом и максимальным током — 350 мА (см. даташит), покупал тут.

Есть еще очень похожие светодиоды — SMD 5730 (без единички в названии). У них мощность всего 0.5 Вт и максимальный ток 0.18 А. Так что не перепутайте.

Так как при последовательном подключении светодиодов общее напряжение будет равно сумме напряжений на каждом из светодиодов, то минимальное напряжение питания схемы должно быть: Uпит = 2.5 + 12 + (3.3 х 10) = 47.5 Вольт.

Рассчитать сопротивление и мощность резистора под другие значения тока можно с помощью простенькой программки Regulator Design (скачать).

Очевидно, что чем выше выходное напряжение стабилизатора, тем больше тепла будет выделяться на токозадающем резисторе и, следовательно, тем хуже КПД. Поэтому для наших целей лучше подойдет LM7805, чем LM7812.

Но я бы порекомендовал использовать для сборки своими руками драйвер для светодиода на lm317 (см. далее).

LM317

Не менее эффективным получается линейный стабилизатор тока для светодиодов на LM317. Типовая схема включения:

Простейшая схема включения LM317 для светодиодов, позволяющая собрать мощный светильник, состоит из выпрямителя с емкостным фильтром, стабилизатора тока и 93 светодиодов SMD 5630. Здесь применены MXL8-PW35-0000 (3500K, 31 Lm, 100 mA, 3.1 V, 400 mW, 5.3×3 mm).

Если такая большая гирлянда из светодиодов не нужна, то к драйверу на LM317 для питания светодиодов придется добавить балластный резистор или конденсатор (чтобы загасить лишнее напряжение). Как это сделать мы очень подробно рассматривали в этой статье.

Совет

Недостаток такой схемы токового драйвера для светодиодов в том, что при повышении напряжения в сети выше 235 вольт, LM317 окажется за пределами расчетного режима работы, а при снижении до ~208 вольт и ниже, микросхема совсем перестает стабилизировать и глубина пульсаций будет целиком и полностью зависеть от емкости С1.

Поэтому использовать такой светильник нужно там, где напряжение более менее стабильно. И на емкости этого конденсатора не стоит экономить. Диодный мост можно взять готовый (например, миниатюрный MB6S) или собрать из подходящих диодов (Uобр не менее 400 В, прямой ток >= 100 мА). Отлично подойдут упомянутые выше 1N4007.

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (!!!) не мерцающих (!!!) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.

Источник: http://electro-shema.ru/chertezhi/stabilizator-toka-dlya-svetodiodov.html

Стабилизатор тока для светодиодов: виды, схемы, как сделать

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт).

Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя.

Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.
Читайте также:  Светильники с датчиком движения для подъезда: светодиодные, для жкх

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Обратите внимание

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

R1=1.25*I0.

Мощность, рассеиваемая на резисторе равна:

W=I2R1.

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей.

Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317.

Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, как подключить светодиодную ленту в авто).

Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора.

Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера.

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

Источник: http://ledno.ru/svetodiody/stabilizator-toka-led.html

Как сделать стабилизатор тока для светодиодов?

Большое разнообразие электроники на современном рынке способствует формированию высоких требований к электропитанию. Существует огромное количество готовых модулей и электронных компонентов. Для светодиодов часто применяются специальные стабилизаторы. Данная технология используется практически в каждом современном светодиодном прожекторе, светильнике или лампе.

Среди пользователей, которые хотят сделать стабилизатор тока для светодиодов своими руками, наибольшей популярностью пользуется микросхема LM317 (включая ее аналоги), относящаяся к подклассу линейных стабилизаторов.

Такие устройства подразделяются на несколько видов:

  1. Линейный стабилизатор тока для светодиодов, входное напряжение которого не превышает 40 В при токе 10 А.
  2. Импульсные устройства, которые отличаются низким входным напряжением (например, импульсный ШИМ-контроллер);
  3. Импульсный стабилизатор тока, для которого характерно высокое входное напряжение.

Выбор наиболее подходящего стабилизатора зависит от КПД и системы охлаждения устройства.

Повышающий и понижающий стабилизаторы

Повышающий стабилизатор преобразует низкое входное напряжение в более высокое на выходе. Этот вариант применяется для светодиодов с блоком питания на малое количество вольт (к примеру, в автомобиле может потребоваться повысить 12 вольт для светодиодов до 19 В или 45 В).

Понижающие стабилизаторы, наоборот, снижают высокое напряжение до нужного уровня. Все модули подразделяются на универсальные и специализированные. Универсальные обычно оборудуются двумя переменными сопротивлениями — для получения нужных параметров тока и напряжения на выходе.

У специализированных устройств значения на выходе чаще всего фиксированы.

В качестве стабилизатора для светодиодов используется специальный стабилизатор тока, схемы которого можно в большом количестве найти в интернете. Популярной моделью здесь является Lm2596. Светодиоды часто подключаются к автомобильной сети или аккумулятору через резистор.

Важно

При этом напряжение может колебаться импульсами до 30 вольт, из-за чего низкокачественные светодиоды могут выходить из строя (мигающие ходовые огни с частично неработающими светодиодами).

Стабилизация тока в данном случае может осуществляться с помощью миниатюрного преобразователя.

Простой преобразователь тока

Сборка миниатюрного преобразователя тока своими руками считается довольно простой. Такие стабилизаторы напряжения обычно изготавливаются в режиме для стабилизации тока. При этом не следует путать максимальное напряжение для всего блока и максимальную нагрузку на ШИМ-контроллер.

На блок может быть установлена система низковольтных конденсаторов на 20 В, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор тока, выполненный своими руками, — это вариант LM317.

Потребуется только рассчитать резистор для светодиода с помощью онлайн калькулятора.

Для LM317 можно использовать подручное питание (к примеру, блок питания на 19 В от ноутбука, на 24 В или 32 В от принтера либо на 9 или на 12 вольт от бытовой электроники).

К преимуществам такого преобразователя относят его низкую цену, минимальное количество деталей, высокую надежность, а также наличие в магазинах. Более сложную схему стабилизатора тока собирать своими руками не рационально.

Поэтому если вы не являетесь опытным радиолюбителем, то импульсный стабилизатор тока намного проще и быстрее будет купить в готовом виде. При необходимости его можно доработать до требуемых параметров.

Чтобы выполнить сборку LM317, никаких особых знаний и навыков по электронике не потребуется (в схемах число внешних элементов минимально). Стоит такой простой стабилизатор тока очень дешево, при этом его возможности многократно проверены на практике.

Совет

Единственный недостаток заключается в том, что LM317 может потребовать дополнительного охлаждения. Также стоит опасаться китайских микросхем LM317 с более низкими параметрами.

Стоимость в любом случае более чем доступна, при этом в цену включена доставка. Китайские производители выполняют довольно трудоемкую работу при цене изделия в 30-50 рублей за штуку.

Ненужные запчасти можно распродать на Авито или форумах в интернете.

Сборка простого стабилизатора своими руками

Светодиод представляет собой полупроводниковый прибор, для работы которого необходим ток. Включение светодиодов через стабилизатор считается наиболее правильным.

Продолжительность функционирования светодиода без потери яркости зависит от его режима работы. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, — их довольно трудно спалить.

Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора.

  1. Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
  2. Провода припаиваются к среднему выводу, а также к одному из крайних.
  3. С помощью мультиметра, включенного в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора). О том, как проверить мультиметром сам светодиод, написано здесь.
  4. После внимательной проверки правильности соединений перед подключением, собирается цепь.

Максимальная мощность LM317 — 1.5 Ампер. Если вы хотите увеличить ток, то в схему можно добавить полевой или обычный транзистор. В результате, для устройства на транзисторе на выходе можно добиться подачи 10 А (задается низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения.

В любом случае, ассортимент продаваемых модулей и блоков достаточно широкий, поэтому устройство с нужными параметрами можно собрать за минимальное время. КПД зависит от разницы напряжения входа и выхода, а также от режима работы.

Устройства средней сложности

Среднюю сложность изготовления имеют драйверы для светодиодов на 220В. Много времени может занять их настройка, требующая опыта по наладке. Такой драйвер извлечь можно из светодиодных ламп, прожекторов и светильников с неисправной светодиодной цепью.

Большинство драйверов также возможно доработать, узнав модель ШИМ-контроллера преобразователя. Параметры на выходе обычно задаются одним или несколькими резисторами. В datasheet указывается уровень сопротивления, необходимый для получения нужного тока.

Если установить регулируемый резистор, то на выходе количество Ампер будет настраиваемым (но без превышения указанной номинальной мощности).

Высокой популярностью на Китайских сайтах в 2016 году пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт).

Стандартный вариант корпуса данного модуля припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема стабилизатора тока должна быть доработана с установкой радиатора на корпус устройства.

Многие пользователи просто ставят радиатор сверху, однако эффективность такой установки довольно низкая. Систему охлаждения лучше всего располагать внизу платы, напротив пайки микросхемы.

Для оптимального качества ее можно отпаять и установить на полноценный радиатор, используя термопасту. Провода при этом потребуется удлинить.

Обратите внимание

Дополнительное охлаждение можно установить и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый драйвер. В цепи в данном случае устанавливается переменный резистор, который задает количество ампер на выходе. Эти характеристики обычно указываются в следующих документах:

  • в спецификации на микросхему;
  • в datasheet;
  • в типовой схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1-3 А (в соответствии с моделью ШИМ-контроллера). Слабое место таких драйверов — нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и ШИМ-контроллера. Дроссель при этом заменяют более подходящим либо перематывают толстым проводом.

Где заказать детали?

Для поиска качественных и одновременно доступных по цене модулей можно воспользоваться сайтом Aliexpress. Стоимость при этом будет в 2-3 раза дешевле по сравнению с другими магазинами. Поэтому для тестирования лучше заказать сразу 2-3 штуки (например, на 12 вольт) по минимальной цене.

На сайте возможно найти любой стабилизатор тока в свободной продаже, включая узкоспециализированный. При наличии соответствующего опыта, всего за 10000 рублей можно изготовить спектрометр стоимостью в 100000 рублей.

Разница в 90% — это, как правило, накрутка за бренд (плюс несколько переработанный китайский софт).

Лидерские позиции по ассортименту преобразователей тока, блоков питания и драйверов заняли китайские интернет-магазины. Заказы приходят в 98% случаев. Цены за DC-DC преобразователь начинаются от 35 рублей. Более дорогие версии могут отличаться наличием двух-трех подстроечных резисторов, вместо одного. Заказ лучше оформлять заранее.

Источник: https://simplelight.info/montazh-i-nastroyka/stabilizator-toka-dlya-svetodiodov.html

Как самому изготовить стабилизатор тока для светодиодов: схемы

Источники тока не имеют ничего общего с источниками напряжения. Предназначение первых заключается в стабилизации выходного параметра, а также возможном изменении выходного напряжения. Это происходит так, чтобы уровень ток все время был одинаковым.

Читайте также:  Лампа стоп сигнала форд фокус 2: как поменять, какая стоит

Источники тока используются для запитки светодиодных ламп, заряда АКБ в авто и т.д. Если у вас возникла необходимость сделать простейший импульсный стабилизатор тока ходовых огней 12в для автомобиля своими руками, то предлагаем вашему вниманию несколько схем.

На КРЕНке

Обустройство цепи на кренке

Чтобы сделать простейший автомобильный импульсный стабилизатор тока в домашних условиях, вам потребуется микросхема 12v. Для этих целей отлично подойдет lm317.

Такой стабилизатор напряжения 12 в lm317 считается регулируемым и способен функционировать с токами бортовой сети до полутора ампер. При этом показатель входного напряжения может составить до 40 вольт, lm317 в состоянии рассеивать мощность до 10 ватт.

Но это возможно только в том случае, если будет соблюдаться тепловой режим.

В целом потребление тока lm317 сравнительно небольшое — в районе 8 мили ампер, и данный показатель почти никогда не изменяется. Даже в том случае, если через крен lm317 проходит другой ток или меняется показатель входного напряжение. Как вы можете понять, стабилизатор 12 в lm317 для бортовой сети авто дает возможность удерживать постоянное напряжение на компоненте R3.

Важно

Кстати, этот показатель можно регулировать благодаря использованию элемента R2, но пределы будут незначительными. В устройстве lm317 компонент R3 является устройством задающего тока. Так как показатель сопротивления lm317 всегда остается на одном и том же уровне, ток, который проходит через него, также будет стабильным (автор видео — Denis T).

Что касается входа крен lm317, ток на них составит на 8 мили ампер выше. Используя вышеописанную схему, можно разработать самый простой стабилизатор напряжения для ДХО автомобиля.

Такой девайс может применяться как устройство электронной нагрузки, источника тока для подзарядки АКБ и других целей. Нужно отметить, что интегральные девайсы током 3а или меньше довольно быстро реагируют на различные изменения импульса.

Что касается недостатков, то такие девайсы характеризуются слишком высоким сопротивлением, в результате чего придется применять мощные компоненты.

На двух транзисторах

Довольно распространенными сегодня являются стабилизаторы для бортовой сети автомобиля 12v на двух транзисторах. Одним из основных недостатков такого устройства является плохая стабильность тока, если происходят изменения в питающем напряжении вольт. Тем не менее, данная схема для бортовой сети автомобиля 12v подходит для многих задач.

Обустройство цепи на транзисторах

Ниже вы сможете ознакомиться с самой схемой. В этом случае устройством, которое раздает ток, является резистор R2. Когда данный показатель растет, соответственно растет и напряжение на данном элементе.

В том случае, если показатель составляет от 0.5 до 0.6 вольт, открывается компонент VT1. При открытии данное устройство будет закрывать элемент VT2, в результате чего ток, который проходит через VT2, начнет снижаться.

При разработке схемы можно использовать полевой транзистор Мосфет вместе VT2.

Что касается компонента VD1, то он применяется на напряжение от 8 до 15 вольт и нужен в том случае, если его уровень слишком высокий и работоспособность транзистора может быть нарушена.

Если транзистор мощный, то показатель напряжения в сети авто может составить около 20 вольт. Необходимо помнить о том, что транзистор Мосфет открывается в том случае, когда показатель напряжения на затворе составит 2 вольта.

Если вы используете универсальный выпрямитель для заряда АКБ или других задач, то вам вполне хватит работы транзистора и резистора R1.

На операционном усилителе (на ОУ)

Механизм на операционном усилителе

Вариант сборки устройства со специальным усилителем ошибки для авто актуален в том случае, если у вас возникла необходимость разработать устройство, работающее в широких пределах. В данном случае выполнять функцию токозадающего элемента будет R7. Операционный увелитель DA2.

2 позволяет усилить уровень напряжения в вольтах токозадающего элемента. Устройство DA 2.1 предназначено для сравнивания уровня опорного параметра. Помните о том, что данная схема девайса на 3а нуждается в дополнительном питании, которое должно подаваться на разъем ХР2.

Уровня напряжения в вольтах должно хватить для того, чтобы обеспечить функциональность элементов всей системы.

Совет

Устройство для авто должно быть дополнено генератором, в нашем случае эту функцию выполняет элемент REF198, характеризующийся уровнем выходного напряжения в 4 вольта.

Сама схема стоит достаточно дорого, так что при необходимости вместо нее можно установить кренку.

Чтобы правильно произвести настройку, следует установить ползунок резистора R1 в верхнее положение, а с помощью элемента R3 выставляется нужное значение тока 3а. Чтобы предотвратить возбуждение, используются компоненты R2, C2 и R4.

На микросхеме импульсного стабилизатора

Схема механизма с применением импульсного устройства

В некоторых случаях устройство для авто должно функционировать не только в большом диапазоне нагрузок, при этом обладая высоким коэффициентом полезного действия. Тогда использование компенсационных устройств будет не целесообразным, вместо них применяются импульсные элементы.

Предлагаем ознакомиться с одной из наиболее распространенных схем МАХ771, ее особенности следующие:

  • уровень опорного напряжения — 1.5 вольт;
  • коэффициент полезного действия при нагрузке от 10 мили ампер до 1 ампера составит около 90%;
  • показатель питания составляет от 2 до 16.5 вольт;
  • мощность на выходе достигает 15 ватт (автор видео — Андрей Канаев).

Что представляет собой процедура стабилизации? Компоненты R1 и R2 — это делители выходных показателей схемы. Когда уровень делимого напряжения становится больше, чем опорное, устройство автоматически снижает выходной параметр.

При обратном процессе устройство будет увеличивать данный показатель.

Вы сможете получить рабочий стабилизированный источник тока в том случае, если цепи будут поменяны таким образом, что система в целом станет реагировать на выходной параметр.

Если нагрузка на устройство не особо большая, то есть менее 1.5 вольт, микросхема будет функционировать в качестве рабочего стабилизатора. Но когда этот параметр начнет резко возрастать, девайс переключится в режим стабилизации. Монтаж резистора R8 необходим только тогда, когда уровень нагрузки слишком высокий и составляет более 16 вольт.

Что касается элементы R3, то он является токораздающим. Одним из основных недостатков такого варианта является слишком высокое падение нагрузки на вышеуказанном резисторе. Если вы хотите избавиться от этого минуса, то для того, чтобы увеличить сигнал, необходимо дополнительно установить операционный усилитель.

Заключение

В этой статье мы рассмотрели несколько вариантов стабилизирующих девайсов для авто. Разумеется, такие схемы всегда можно при необходимости модернизировать, способствуя повышению показателя быстродействия и т.д.

Имейте в виду, что если нужно, вы всегда можете использовать специально разработанные микросхемы в качестве регулятора.

Также при возможности можно самостоятельно производить достаточно мощные регулирующие компоненты, но таких варианты более актуальны для того, чтобы решать определенные задачи.

Как вы видите, разработка схемы — дело достаточно сложное и кропотливое, к нему нельзя просто так подойти, не имея соответствующего опыта. Отсутствие определенных навыков не позволит получить необходимый результат. Чтобы своими руками сделать такую схему для авто, необходимо внимательно выполнять все действия, описанные выше.

Видео «Устройство для питания светодиодов»

Как в домашних условиях сделать стабилизатор для питания ламп в авто или других целей — узнайте из видео (автор видео — Дед Синь).

 Загрузка …

Источник: https://avtozam.com/elektronika/auxiliary/stabilizator-toka-dlja-svetodiodov/

Стабилизатор тока для светодиодов

Содержание:

Ни для кого не секрет, что светодиодные лампы периодически перегорают, несмотря на продолжительные гарантийные сроки, установленные производителями.

Очень многие просто не знают настоящих причин, по которым они выходят из строя. Тем не менее, никаких особых сложностей здесь нет, просто у таких ламп имеются определенные параметры, требующие обязательной стабилизации.

Это сила тока в самой лампе и падение напряжения в питающей сети.

Для решения этой проблемы используется стабилизатор тока для светодиодов. Однако не все стабилизаторы могут эффективно решать поставленную задачу.

Поэтому в некоторых случаях рекомендуется изготавливать стабилизатор своими руками.

Прежде чем приступать к этому процессу следует тщательно разобраться в назначении, устройстве и принципе работы стабилизатора, чтобы не допустить ошибок при сборке схемы.

Назначение стабилизатора

Основной функцией стабилизатора является выравнивание тока, независимо от перепадов напряжения в электрической сети. Всего существует два типа стабилизирующих устройств – линейные и импульсные.

В первом случае осуществляется регулировка всех выходных параметров путем распределения мощности между нагрузкой и собственным сопротивлением. Второй вариант значительно эффективнее, поскольку в этом случае на светодиоды поступает лишь необходимое количество мощности.

Действие таких стабилизаторов основано на принципе широтно-импульсной модуляции.

У импульсных стабилизаторов более высокий коэффициент полезного действия, составляющий не менее 90%. Однако у них довольно сложная схема и соответственно высокая стоимость по сравнению с приборами линейного типа.

Обратите внимание

Следует отметить, что использование стабилизаторов LM317 допустимо только для линейных схем. Они не могут включаться в цепи с большими значениями токов.

Именно поэтому данные устройства наилучшим образом подходят для совместного использования со светодиодами.

Необходимость использования стабилизаторов объясняется особенностями параметров светодиодов. Они отличаются нелинейной вольтамперной характеристикой, когда изменение напряжения на светодиоде приводит к непропорциональному изменению тока.

С увеличением напряжения, возрастание тока в самом начале происходит очень медленно, поэтому свечения не наблюдается. Далее, когда напряжение достигает порогового значения, начинается излучение света с одновременным быстрым возрастанием тока.

Если напряжение продолжает увеличиваться, в этом случае происходит еще большее возрастание тока, что приводит к сгоранию светодиода.

Характеристики светодиодов отражают значение порогового напряжения в виде прямого напряжения при номинальном токе. Показатель номинального тока для большинства светодиодов малой мощности составляет 20 мА. Мощные светодиоды требуют более высокого номинального тока, достигающего 350 мА и выше. Они выделяют большое количество тепла и устанавливаются на специальные теплоотводы.

Для того чтобы обеспечить нормальную работу светодиодов, питание к ним должно подключаться через стабилизатор тока. Это связано с разбросом порогового напряжения. То есть, различные типы светодиодов отличаются разным прямым напряжением. Даже у однотипных ламп может быть не одинаковое прямое напряжение, причем не только его минимальное, но и максимальное значение.

Таким образом, если подключить параллельно два светодиода к одному и тому же источнику, то они будут пропускать через себя совершенно разный ток.

Важно

Различие токов приводит к преждевременному выходу их из строя или мгновенному перегоранию.

Чтобы избежать подобных ситуаций, светодиоды рекомендуется включать совместно со стабилизирующими устройствами, предназначенные для выравнивания тока и доведения его до определенной, заданной величины.

Стабилизирующие устройства линейного типа

С помощью стабилизатора выполняется установка тока, проходящего через светодиод, с заданным значением, не зависящим от напряжения, приложенного к схеме.

Если напряжение превысит пороговый уровень, ток все равно останется прежним и не будет изменяться.

В дальнейшем, когда общее напряжение увеличится, его рост произойдет лишь на стабилизаторе тока, а на светодиоде оно останется неизменным.

Таким образом, при неизменных параметрах светодиода, стабилизатор тока может называться стабилизатором его мощности. Распределение активной мощности, выделяемой устройством в виде тепла, происходит между стабилизатором и светодиодом пропорционально напряжению на каждом из них. Данный тип стабилизатора получил название линейного.

Нагрев линейного стабилизатора тока возрастает вместе с ростом приложенного к нему напряжения. Это является его основным недостатком. Тем не менее, это устройство обладает рядом преимуществ. Во время работы отсутствуют электромагнитные помехи. Конструкция очень простая, что делает изделие достаточно дешевым в большинстве схем.

Существуют такие области применения, в которых линейный стабилизатор тока для светодиодов на 12 В становится более эффективным, по сравнению с импульсным преобразователем, особенно когда напряжение на входе лишь незначительно выше напряжения на светодиоде. Если питание осуществляется от сети, в схеме может использоваться трансформатор, к выходу которого подключается линейный стабилизатор.

Таким образом, вначале напряжение снижается до такого же уровня, как и в светодиоде, после чего линейный стабилизатор устанавливает необходимое значение тока.

Совет

Другой вариант предполагает приближение напряжения светодиода к питающему напряжению. С этой целью выполняется последовательное соединение светодиодов в общую цепочку.

В результате, общее напряжение в цепи составит сумму напряжений каждого светодиода.

Некоторые стабилизаторы тока могут быть выполнены на полевом транзисторе, с использованием р-п-перехода. Ток стока устанавливается с помощью напряжения затвор-исток. Ток, проходящий через транзистор, такой же, как и начальный ток стока, указанный в технической документации. Значение минимального рабочего напряжения такого устройства зависит от транзистора и составляет порядка 3 В.

Импульсные стабилизаторы тока

К более экономичным устройствам относятся стабилизаторы тока, основой которых является импульсный преобразователь. Данный элемент известен еще, как ключевой преобразователь или конвертер.

Внутри преобразователя мощность прокачивается определенными порциями в виде импульсов, что и определило его название. В нормально работающем устройстве потребление мощности происходит непрерывно.

Она непрерывно передается между входной и выходной цепями и также непрерывно поступает в нагрузку.

В электрических схемах стабилизатор тока и напряжения на основе импульсных преобразователей имеет практически одинаковый принцип действия.

Единственным отличием является контроль над током через нагрузку, вместо напряжения на нагрузке. Если ток в нагрузке снижается, стабилизатор осуществляет подкачку мощности.

В случае увеличения – выполняется снижение мощности. Это позволяет создавать стабилизаторы тока для мощных светодиодов.

В наиболее распространенных схемах дополнительно имеется реактивный элемент, называемый дросселем. От входной цепи на него определенными порциями поступает энергия, которая в дальнейшем передается на нагрузку. Такая передача происходит через коммутатор или ключ, находящийся в двух основных состояниях – выключенном и включенном.

Обратите внимание

В первом случае ток не проходит, а мощность не выделяется. Во втором случае ключ проводит ток, обладая при этом очень малым сопротивлением. Поэтому выделяемая мощность также близка нулю. Таким образом, передача энергии происходит практически без потерь мощности.

Однако импульсный ток считается нестабильным и для его стабилизации используются специальные фильтры.

Наряду с явными преимуществами, импульсный преобразователь обладает серьезными недостатками, устранение которых требует специфических конструктивных и технических решений. Эти устройства отличаются сложностью конструкции, они создают электромагнитные и электрические помехи.

Они затрачивают определенное количество энергии для собственной работы и в результате нагреваются. Их стоимость существенно выше, чем у линейных стабилизаторов и трансформаторных устройств.

Тем не менее, большинство недостатков успешно преодолеваются, поэтому импульсные стабилизаторы пользуются широкой популярностью у потребителей.

Драйвер питания светодиодов

Источник: https://electric-220.ru/news/stabilizator_toka_dlja_svetodiodov/2017-01-28-1165

Стабилизатор тока светодиода

См. также:  Электронный балласт для светодиодной лампы. Схемотехника.

Читайте также:  Led лампы 4drive для автомобиля: подробный обзор + пошаговая установка

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока. 

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально.

По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро.

Важно

При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов — 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше — 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс.

Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение — это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток.

Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени).

Следовательно, включать светодиоды без устройств выравнивания тока — нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток — стабилизаторы тока.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода.

В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным.

Совет

Также существуют более экономичные устройства — стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера).

Они называются импульсными, поскольку внутри себя прокачивают мощность порциями — импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Линейный стабилизатор тока

Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:

  • Линейный стабилизатор не создаёт электромагнитных помех
  • Прост по конструкции
  • Имеет низкую стоимость в большинстве применений

Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность — когда входное напряжение лишь немного превышает напряжение на светодиоде.

Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока.

То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.

В другом случае, можно приблизить напряжение светодиода к напряжению питания — соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.

Схемы линейных стабилизаторов тока

Самая простая схема стабилизатора тока — на одном транзисторе (схема «а»). Поскольку транзистор — это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h21 раз (коэффициент усиления).

Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема «б»). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова.

Гораздо лучше работает схема с обратной связью «в» и «г». Резистор R в схеме выполняет роль обратной связи — при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается.

Схема «г», при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.

Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема «д»). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации.

Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства — готовые стабилизаторы с фиксированным током, собранные по такой схеме — CRD (Current Regulating Devices) или CCR (Constant Current Regulator) .

Обратите внимание

Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.

Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент — при увеличении температуры, ток через светодиоды снижается.

Импульсный стабилизатор тока

Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении — снижает.

Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент — дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке.

Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:

  • Импульсный конвертер производит электрические и электромагнитные помехи
  • Имеет как правило сложную конструкцию
  • Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
  • Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях — включенном и выключенном.

В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале — равное нулю), соответственно на нём выделяется мощность, близкая к нулю.

Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток.

Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.

С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора.

Но если использовать вместо RC — LC фильтр (схема «б»), то, благодаря «специфическим» свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством — ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике.

После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем.

Ток в дросселе правильно работающего устройства присутствует постоянно — так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode — CCM).

При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством.

Важно

Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode — BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции — с разрывом или с использованием специальных магнитных материалов.

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.

Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом — широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания.

Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку.

Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Еще одна схема импульсного преобразователя работает аналогично — когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение.

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Прямоходовой и обратноходовой преобразователи

Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более.

Прямоходовой преобразователь (схема «а») передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически — это модифицированный понижающий преобразователь.

Обратноходовой преобразователь (схема «б») передаёт энергию от источника в нагрузку во время выключенного состояния.

В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически — это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции.

В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой — Flyback converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения.

Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя.

Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1.

Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора.

В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель.

Совет

При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор.

Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования — контролем пикового тока дросселя.

Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля — включается. Эффективность устройства достигает 94%.

Назад к каталогу статей >>>

Источник: http://led-displays.ru/stabilizator_toka.html

Ссылка на основную публикацию
Adblock
detector